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Figure 1: (a) Tagnoo is a computational plywood, consisting of a plywood panel augmented with a grid of RFID tags. (b) Tagnoo
can be used to construct office furniture like a table and chair, which are capable of sensing the presence of an object or user. (c)
The heatmap image of the RSSI values captured while a user is seated at a desk using a laptop. The upper segment shows the
sensor data obtained from the desk, while the lower segment shows the sensor data obtained from the chair.

Abstract
Tagnoo is a computational plywood augmented with RFID tags,
aimed at empowering woodworkers to effortlessly create room-
scale smart environments. Unlike existing solutions, Tagnoo does
not necessitate technical expertise or disrupt establishedwoodwork-
ing routines. This battery-free and cost-effective solution seamlessly
integrates computation capabilities into plywood, while preserv-
ing its original appearance and functionality. In this paper, we
explore various parameters that can influence Tagnoo’s sensing
performance and woodworking compatibility through a series of
experiments. Additionally, we demonstrate the construction of
a small office environment, comprising a desk, chair, shelf, and
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floor, all crafted by an experienced woodworker using conventional
tools such as a table saw and screws while adhering to established
construction workflows. Our evaluation confirms that the smart
environment can accurately recognize 18 daily objects and user
activities, such as a user sitting on the floor or a glass lunchbox
placed on the desk, with over 90% accuracy.
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1 INTRODUCTION
The rapid advancement in computing technologies has led to a
transformative vision, which aims to integrate computation into
everyday materials, such as wood and textile, commonly used to
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construct the physical environment [29]. This vision seeks to seam-
lessly combine sensing, computing, and wireless connectivity into
these materials, thus enabling the creation of smart environments
on an unprecedented scale. By imbuing computational and sensing
capabilities into the very fabric of our surroundings, physical envi-
ronments can actively sense and respond to users’ daily activities,
opening up a wide range of data-driven applications that can facili-
tate various life and work goals. Importantly, this can be achieved
while maintaining the original appearance and functionality of the
environment.

Despite the promising prospects, realizing this vision is accom-
panied by substantial challenges. From a sensing perspective, a
significant obstacle lies in the limited capability of existing compu-
tational materials to function without wire connections for power,
computation, or data communication. Prior research on wood or
textile sensors has revealed that the majority of them rely on wire
connections to external devices and batteries [96–98, 107]. Another
critical challenge is the materials’ inability to maintain function-
ality in the presence of damage during the fabrication process,
such as cutting and screwing. Despite some prior works equipping
materials with basic computing and wireless connectivity, their
sensors fail to survive common fabrication operations, such as cut-
ting [34, 35]. Consequently, the majority of existing work cannot
function as a material and cannot be seamlessly integrated into
the established workflows and tools used by workers to construct
physical environments.

This paper introduces Tagnoo, a computational plywood proto-
type that addresses the aforementioned challenges associated with
the development of room-scale smart environments using computa-
tional materials. Tagnoo is a plywood panel augmented with a grid
of Radio Frequency Identification (RFID) tags (Figure 1a). Tagnoo
can be used to construct office furniture such as tables, chairs, and
shelves as well as building infrastructure like floors to detect the
presence of everyday objects and users - such as a person typing
on a laptop at a table (Figure 1b and c). Tagnoo stands out as a
battery-free and cost-effective smart plywood prototype capable of
withstanding common woodworking operations, such as sawing,
nailing, or screwing. It allows woodworkers to seamlessly incorpo-
rate it into their projects without requiring specialized technical
or engineering skills. Additionally, Tagnoo maintains a form factor
that is nearly identical to regular plywood, eliminating the need
for electrical connections to external devices like microcontrollers
or wireless communication modules.

An important aspect of Tagnoo is its compatibility with wood-
working techniques, allowing for the creation of household items
using plywood without disrupting established workflow. Although
some RFID tags may be susceptible to damage during woodworking
operations, the majority of them remain intact and fully functional
in the final product. Once the items, such as desks and shelves,
constructed with Tagnoo are completed, RFID readers can retrieve
the signals from the tags. The presence of RF-absorbing objects
placed on the sensor surface, such as a glass lunchbox or a lap-
top on the desktop, may hinder the propagation of RF signals and
subsequently impact the signal strength of the tags (Figure 1c). By
carefully analyzing the readings obtained from each individual tag,
our system can recognize diverse objects using machine learning

techniques. This data can subsequently be used to infer user ac-
tivities, enabling new applications for contextual interactions or
personal reflection.

The design and implementation of our prototype were informed
by a series of experiments aimed at examining the various parame-
ters that may impact the sensing performance. These parameters
included the type of RFID tags used, the arrangement of the tags,
the optimal depth at which the tags should be placed inside the ply-
wood, and the adhesive strategy used to affix a veneer layer on top
of the tags. Additionally, we evaluated the potential effects of some
of the common woodworking operations, such as cutting, screwing,
and painting, on each individual tag as well as the overall sensing
performance of the remaining plywood sensor. To validate the effec-
tiveness of our approach, we invited two experienced woodworkers
to construct a small office environment using the Tagnoo. This envi-
ronment consisted of a desk, chair, shelf, and floor, all crafted using
conventional tools such as a table saw and screws while adhering
to established construction workflows. Subsequently, we conducted
tests to assess the recognition accuracy of the smart environment
for 18 daily objects and simple user activities, such as a user sitting
on the floor or a glass lunchbox placed on the desk. Our findings
revealed that our system achieved an accuracy rate of over 90%.

Our research centers on advancing computational materials and
their integration into practical use. In this context, it makes three
key contributions. Firstly, it demonstrates the creation of a room-
scale smart environment using well-established tools and workflow
commonly employed by woodworkers, without the need for a tech-
nical background. Secondly, it presents experimental results that
investigate the factors influencing sensing performance and the
potential impact of woodworking operations such as cutting, screw-
ing, and painting. Lastly, it evaluates the sensing accuracy of some
of the common daily objects and simple user activities within the
smart environment.

2 RELATEDWORK
In this section, we provide a concise overview of the background
and existing literature in the area of computational materials, RFID
sensing, and sensor deployment for smart environments.

2.1 Computational Materials
"Computational materials" is a term coined by Gregory Abowd,
which refers to everyday materials that possess embedded compu-
tational capabilities or wireless sensors that seamlessly integrate
into the material itself [29]. The concept of computational materials
can be traced back to 1998 with the introduction of the Musical
Jacket [73]. This innovative garment featured a fabric-based touch
keypad, enabling users to interact with a computer using the jacket
itself. Since then, extensive research efforts have been devoted to
the advancement of interactive materials [48, 72, 75, 76, 96, 97].
A notable example relevant to this research is Capacitivo, devel-
oped by Wu, et al. [97]. Capacitivo features a fabric sensor that
uses capacitive sensing to recognize the objects in contact with it.
This broadens the range of applications for interactive materials,
allowing for more intuitive and seamless user interactions.

Recent advancements in materials science and manufacturing
have greatly accelerated progress in computational materials. These
materials can now be produced at a low cost [35, 37, 98, 103], and
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even operate without the need for a battery [33, 34, 103], bring-
ing practical applications within reach. For instance, the develop-
ment of triboelectric nanogenerator (TENG) technology demon-
strates the ability to convert mechanical energy to electrical energy
[94, 95]. This breakthrough has paved the way for creating battery-
less computational materials [33, 34]. One example of this progress
is SATURN and MARS [34, 35], where researchers have successfully
designed a batteryless paper microphone. This novel device utilizes
TENG to sense audio sounds from users and employs backscatter to
eliminate the need for a battery. Another development in this field
is the integration of TENG into plywood, known as iWood [98]. By
optimizing the structure of TENG, researchers have ensured that the
sensor remains functional even during commonwoodworking oper-
ations. This integration enables the fabrication of everyday objects
that are inherently embedded with vibration sensors, expanding
the possibilities for incorporating computational capabilities into
various household items.

Despite the significant progress made in the field of compu-
tational materials, most existing materials lack the capability to
operate without wire connections for power, computation, or data
communication. Moreover, most of them are incapable of sustaining
their functionality in the event of damage during the fabrication
process, such as cutting and screwing. In light of existing research,
our work introduces a new method, which aims to create computa-
tional materials that effectively address these limitations. The pro-
posed approach involves the integration of RFID tags into plywood,
thereby imbuing the material with limited sensing, computing, and
wireless connectivity capabilities, while still retaining the inherent
characteristics of traditional plywood.

2.2 RF Sensing
Radio frequency (RF) signals have a rich history of utilization in
the detection and tracking of objects, humans, and environmental
changes [43, 86]. The underlying principle involves the transmis-
sion of a radio signal, followed by the observation of the reflected
signal. This reflected signal contains information about the ma-
terial composition, shape, size, orientation, and even movement
patterns of nearby objects. By analyzing these reflected signals, a
system can facilitate a wide range of applications, including the
recognition of human activities [39, 62, 64, 68, 83, 85, 93, 107], the
identification of gestures [32, 85, 92, 96], the monitoring of vital
signs [30, 49, 82], the localization of indoor positions [66, 109], the
identification of individuals [47, 56], and the recognition of objects
[44, 60, 63, 80, 88, 104]. These advancements highlight the potential
of RF sensing technology. Moreover, RF sensing offers distinctive
advantages over alternative sensing approaches, as it can effectively
identify objects that are obstructed by barriers and can even discern
the materials comprising those objects. Building upon this founda-
tion, our work aims to incorporate RF sensing into computational
plywood, thereby enabling object recognition capabilities.

The RF-based technique that is directly relevant to our research is
RFID. RFID is a specialized RF technology primarily used for the pur-
pose of identifying and tracking objects or people using RFID tags.
These tags are composed of a small chip and an antenna that can
store and transmit data wirelessly to RFID readers. When an RFID
reader emits an RF signal, it powers the tag, prompting it to respond

with the information it holds. The applications of RFID technology
are vast, with significant usage in supply chain management [89],
asset tracking [46, 74], inventory control [81, 110], access control
systems [78], and contactless payment methods [31]. Its versatil-
ity lies in its ability to operate at different radio frequencies, with
the high-frequency range (13.54 MHz) and ultra-high frequency
range (915 MHz) being the most popular for RFID systems. In HCI,
both HF and UHF RFID have been utilized to track the location
and orientation of objects [67, 87]. UHF RFID has demonstrated
significant potential in various applications owing to its shorter
wavelength, higher reading rates, and extended sensing range. Be-
yond object identification, UHF RFID tags possess the capability to
enable functionalities such as activity recognition [30, 53, 69, 84],
touch sensing [55, 77], shape awareness [58, 90], material iden-
tification [51, 91, 101, 108], person identification [47], and object
imaging [91]. However, a significant challenge in deploying UHF
RFID tags lies in the integration process, which demands substan-
tial time, effort, and technical expertise from workers. Overcoming
this obstacle is crucial to harness the full potential of UHF RFID
technology. In response, our work demonstrates an approach that
involves the integration of dense arrays of RFID tags into materials,
specifically plywood. This approach empowers woodworkers to
effortlessly and implicitly deploy an extensive network of RF tags
across different items within an environment. By embedding RFID
tags into plywood, the deployment process becomes simplified, en-
abling efficient and widespread adoption of UHF RFID technology
in various contexts.

2.3 Sensor Deployment for Smart Environments
Smart environments are physical spaces that incorporate a range
of computing and interface devices, working in tandem to enhance
the overall quality of life, optimize resource utilization, and de-
liver personalized services to the individuals residing within these
environments [41, 71]. Several key components are required to
establish such smart environments, including connected sensors
[59, 79], actuators [79], data processors [42], AI technologies [102],
and software platforms [54]. However, deploying connected sen-
sors is considered the foundational step among these components,
as they play a critical role in collecting and providing data to the
system, thereby driving its intelligence.

Onewidely adopted approach for deploying connected sensors in
various environments involves directly attaching sensing devices to
existing infrastructure in an ad-hoc manner [50, 52, 57, 62, 105, 106].
Extensive prior research has employed this approach by installing
electromagnetic (EM) [40, 50, 62, 83, 107], vibration [52, 57, 99, 106],
and light sensors [61, 65, 103] within the environment to detect and
monitor user interaction and activities. For example, ElectriSense
[50] installs sensors on power outlets, utilizing electromagnetic
interference in powerlines to identify appliances. Similarly, Wall++
[107] utilizes painted antennas and sensors on walls to capture
airborne EMI signals, enabling the detection and localization of
appliances . Another notable work, StarLight [65], deploys sparse
photodiodes on the floor to receive light signals and reconstruct
human posture. Furthermore, efforts have been made to install
vibration sensors or tags on floors and walls [106], as well as plumb-
ing, gas, and HVAC infrastructure [105] to detect user activities.
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However, it is worth noting that the integration of sensors into exist-
ing spaces through current ad-hoc methods often results in devices
that are visually conspicuous and do not seamlessly blend with the
surroundings. While this lack of integration can be mitigated by
concealing the sensors more effectively within the environment
[107], this process typically requires expertise in electronics and
engineering, thereby posing challenges for workers without a tech-
nical background.

In summary, our research stands out from the existing literature
for its unique focus on the advancement of computational materials
and their integration into practical use. Tagnoo is developed to with-
stand operations such as cutting, nailing, and screwing. This sets
our work apart from many existing approaches as their sensors did
not involve the same use of materials, causing them to break upon
encountering such operations. Furthermore, unlike many other
existing works, our approach does not rely on wired connections
for power, computation, and data communication. This ensures
that Tagnoo can seamlessly integrate into existing woodworking
workflows and tools without requiring workers to acquire new
skills unrelated to their domain, such as electronics or engineering.

3 DAYS IN THE LIFE OF A TAGNOO USER
Tagnoo is a computational plywood that functions just like tradi-
tional plywood materials, suitable for a variety of applications in
both residential and commercial settings. Its main goal is to facilitate
the development of smart environments when Tagnoo serves as an
alternative of plywood materials for woodworkers and consumers
in their projects. For example, woodworkers can choose Tagnoo
for constructing furniture or as a flooring material during home
construction and renovation projects. As such, Tagnoo’s direct tar-
get audience is primarily woodworkers and users who engage in
furniture assembly. However, from the perspective of end-users,
residing within a Tagnoo environment offers advantages through
seamless and implicit interaction with the computer system. This
interaction enables the deployment of various data-driven appli-
cations, which in turn assist users in achieving their personal and
professional goals. This section provides an illustrative example of
typical days for a Tagnoo end user.

Alice, a first-year college student, is preparing to move into her
new rental place before the start of her first semester. Prior to her
move, she decides to renovate her room with new furniture and
flooring. Her desired furnishings include a desk, chair, bookshelf,
and other necessary items like a bed frame. Due to a limited budget
and tendency to having personalized items, Alice chooses the DIY
route for her furnishings. She visits a hardware store to purchase
conventional plywood, Tagnoo materials, Tagnoo-enabled floor
planks, and other necessary building components and tools. With
the assistance of her brother, who is a skilled carpenter, she installed
the floor planks in her room (Figure 2a). Once the floor installation
was complete, they proceeded to cut both the traditional plywood
and Tagnoo into smaller segments to create the furniture pieces
(Figure 2b). Familiar with furniture assembly from past projects,
they assemble the furniture using screws (Figure 2c). It should be
noted that Alice recognizes that some of the sensing functional-
ities provided by Tagnoo could potentially be achieved through
alternative technologies, such as using a smartwatch or installing
ad-hoc sensors on the furniture. However, she opted for Tagnoo as

it instantly transforms her environment into a smart living space
without requiring any additional technical aspects on installing
them.

After moving in, Alice can configure her desk to log her daily
activities and work progress, allowing it to respond accordingly.
For instance, the desk and chair can detect and record events such
as the duration of laptop usage or periods of non-usage. This can
be inferred by the presence or absence of her laptop on the desk
or in her bag placed on the chair during holidays (Figure 2d). The
information collected can be used to provide Alice with insights into
her work practices, facilitating personal reflection and potentially
even offering insights into her psychological state during work. In
addition, the bookshelf can detect and log Alice’s reading habits
by tracking when she takes her book from the shelf and returns
them (Figure 2e). If this routine is disrupted, especially during a
busy week before a school project deadline, the change in behavior
can be logged for Alice to review at a later time. Furthermore, the
desk can also detect the placement of objects such as chocolate bar
or a glass lunch box, with or without her favorite rice dish. This
information can be used to infer details about Alice’s diet. When
combined with the duration of her preferred floor-sitting exercise
routine sensed by the floor, the system can provide her with insights
into her health, well-being, and lifestyle choices.

4 TAGNOO DESIGN AND IMPLEMENTATION
Tagnoo consists of a grid of RFID tags embedded within a plywood
panel to sense objects and users in the environment. Each RFID
tag functions as a "pixel" within the panel, enabling the system
to perceive changes in the environment by detecting blockages or
alterations in the strength of RF signals caused by the presence of
different objects and humans. Our development of Tagnoo began
with an investigation on the integration of RFID tags into the ply-
wood substrate in a reliable manner while ensuring their sensitivity
not significantly degrading. This involved a series of preliminary
experiments, aimed at exploring suitable RFID tag types, tag densi-
ties, depths for embedding the tags, and various adhesive strategies
used to affix a veneer layer on top of the tags. Throughout these
experiments, a UHF RFID Reader from Impinj Speedway (Revolu-
tion R420) and UHF RFID Antenna (Vulcan 262006) were used to
measure the signal strength of the RFID tags

4.1 Experiment 1: Tag Types
UHF RFID tags are available in various sizes and shapes, each tai-
lored to meet specific application requirements. Our study focused
on identifying a UHF RFID tag that could be seamlessly integrated
into plywood, effectively operate in a dense configuration, and
maintain a consistent reading regardless of its orientation. Since
RFID tags may be positioned in various orientations inside fur-
niture or floors, we needed to select a tag to accommodate these
variations.

Tag pre-selection. Our selection process was guided by four crite-
ria. First, the RFID tags should be easily cut or drilled to prevent
obstruction during woodworking operations. Secondly, they need
to be relatively small to allow for a decent sensing resolution in
a 2D space when arranged in a grid layout. Thirdly, the reading
range of the RFID tags should be sufficient to cover the size of
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Figure 2: An illustration of use scenarios of Tagnoo. Tagnoo can be easily (a) installed as floors, providing seamless integration
into the physical environment. Additionally, it can be (b) cut into small pieces and (c) assembled into furniture. The physical
environment created using Tagnoo can sense user activities and daily routines by detecting various events through the presence
of personal items and objects. For instance, (d) a laptop left on the table for an extended period could indicate that the user
is away from work, possibly on vacation. (e) If a user’s favorite book remains on the bookshelf during the user’s designated
reading time for several days, it could signify a change in the user’s routine.

a room. Lastly, the RFID tags should be reliably detected regard-
less of their orientation to the RFID antenna. We investigated 24
widely available RFID tags, including those with and without en-
closures, and with varying sizes and reading ranges [1–24]. We
cut and drilled the tags with enclosures and compared their resis-
tance to that of regular plywood, concluding that enclosures hinder
woodworking operations. Consequently, tags with protective shells
[1, 10, 12, 15, 22] were excluded. Additionally, tags with footprints
exceeding 10 cm on any side were disregarded [6, 9, 17–21], as they
would be too large to be arranged in a dense grid for accurate sens-
ing. Further, tags with a reading range shorter than 5 meters were
not considered [3–5, 11, 16], as they may not be reliably detected at
a room-scale. The remaining tags were either circularly polarized
or linearly polarized.

Orientation effect. To evaluate the reliability of the remaining
tags at different orientations to the RFID antenna, we conducted
an experiment using two specific tags: Impinj H47 [13] and Impinj
E62 [25]. The Impinj H47 was chosen due to its widespread use as a
circularly polarized tag. Additionally, the Impinj E62 was selected to
assess the performance of a linearly polarized tag, given its similar
size to the Impinj H47 tag. While these tags may not represent the
most optimal options in terms of size or sensitivity, they were suit-
able for gaining insight into the performance differential between
circularly and linearly polarized tags.

In our experimental setup, we carefully arranged each type of
RFID tag under investigation into a 3 × 3 array configuration. The
distance between the centers of adjacent tags was precisely set at
10 cm from one another. The purpose of our measurements was to
evaluate the sensitivity of the tags in four different orientations: 0°,
30°, 60°, and 90°. For the circularly polarized tags, we excluded the
90° angle from testing to avoid duplicating results, as it is identical
to the 0° angle. To ensure consistency, each reading phase was
conducted for a duration of 3 minutes (approximately 6000 sample
points per tag). Throughout the experiments, all the tags were
positioned below the RFID antenna, and they were placed on top
of a plywood surface. We retrieved RSSI from the RFID reader to
measure the sensitivity of tags. To minimize the potential influence
of tag location with respect to the RFID antenna, we calculated the
average RSSI based on the data from all the tested tags.

Result. Figure 3 illustrates the results of the experiment. All of
the circularly polarized tags demonstrated consistent readability,
maintaining a stable RSSI across the four tested orientations. In
contrast, the orientation of linearly polarized tags significantly im-
pacted their RSSI. Specifically, during the 3-minute reading periods
at 0° and 30° conditions, two and seven tags, respectively, could not
be detected. Thus, we opted to incorporate circularly polarized tags
into our prototype. Note that the close proximity between linearly
polarized tags might affect their sensitivity, causing their RSSI to be
lower than that of circularly polarized tags. Nevertheless, this fact
does not alter our decision, because our decision was made based
on the rationale that furniture in a smart environment should not
be restricted to a specific orientation and should remain interactive
even when rotated by the user.

Figure 3: RSSI of the E62 linearly polarized andH47 circularly
polarized tags placed in different orientations. (The solid
orange line indicates the median, while the dashed green
line represents the mean in all figures. The variations in
box size and error bars demonstrate more noticeable signal
differences from RFID tags at different positions within the
3×3 grid (also shown in Figure 6, Figure 7, Figure 8 and Figure
10). However, these variances are smaller when tag locations
remain the same (as shown in Figure 4, Figure 5, and Figure
9.
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4.2 Experiment 2: Tag Grid Density
This study aimed to examine the impact of the density of circularly
polarized tag grids on tag readings. It is generally observed that
a denser arrangement of tags results in a higher 2D sensing res-
olution, which is particularly advantageous for capturing subtle
human activities and small objects in the environment. Further-
more, a denser arrangement is less susceptible to the loss of the
sensing region within the plywood sensor caused by damage to the
tags during woodworking operations like sawing, nailing, or screw-
ing. However, the potential drawback of a denser tag arrangement
is the possibility of interference between adjacent tags, leading to
a decline in RSSI. Hence, our experiment aimed to determine the
maximum density of RFID tags that can be used in our implementa-
tion without compromising RSSI. Like our previous experiment, we
positioned the circularly polarized RFID tags in a 3 × 3 grid below
the RFID antenna. The distance between the centers of adjacent
tags was varied, ranging from 6 cm to 15 cm. To investigate the in-
terference of the surrounding tags on the central tag, we calculated
its RSSI. To avoid tag overlap at close ranges, distances below 5cm
were excluded from this experiment.

Result. The results of this experiment are illustrated in Figure 4.
Our findings indicate that the distance between tags has an effect on
the RSSI. Specifically, we observed an improvement in RSSI as the
distance between the centers of adjacent tags increased from 6 cm
to 10 cm. However, once the distance exceeded 10 cm, we noticed a
stabilization of RSSI, suggesting that the influence of adjacent tags
on signal strength becomes minimal. This finding has implications
for the design and deployment of our tag-based system. It suggests
that maintaining a minimum distance of 10 cm between tags can
optimize signal strength and minimize interference. Beyond this
distance, the impact of adjacent tags on RSSI becomes negligible.
However, it is important to note that there are trade-offs associated
with increasing the distance between tags. One such trade-off is the
effect on sensing resolution in a 2D space. If the target applications
require a higher tag resolution, such as sensing a cup with a diame-
ter of less than 10 cm, a balance needs to be struck. In such cases,
it may be necessary to compromise on the optimal signal strength
to ensure accurate object detection.

Figure 4: RSSI of the RFID tags placed at different distances
from each other. The small variances in box size and error
bars are due to the use of a single RFID tag to obtain the RSSI
values in each condition (same in Figure 5 and Figure 9).

In certain scenarios, particularly those involving activities on
the floor, the close arrangement of RFID tags may not always be

necessary. Objects of larger size, such as feet in these scenarios,
obstruct the propagation of RF signals over a wider area, allowing
for a sparser arrangement of tags while still effectively detecting
them. This approach offers the potential for reduced manufacturing
costs. Thus, we conducted an additional experiment to investigate
the minimum density at which tags can be arranged without sig-
nificantly compromising the resolution of 2D sensing. The specific
focus of our experiment was to determine the maximum horizon-
tal distance at which a tag can detect an object (fist in our case),
which measured approximately 10 cm in length. To carry out the
experiment, a single tag was positioned beneath the RFID antenna,
and the distance between the object and the tag was systematically
varied from 10 cm to 30 cm, with an increment of 5 cm.

Result. The results of this experiment are illustrated in Figure 5.
When the object is positioned within a distance of 15cm from the
RFID tag, there is a notable decrease about 7dB in RSSI compared
to the scenario without an object. This substantial change suggests
that the presence of the object within this close proximity signifi-
cantly affects the tag’s reception of RF signals. However, beyond a
distance of 20 cm, this effect gradually diminishes and eventually
becomes indistinguishable from the situation where no object is
present.

Figure 5: RSSI of an RFID tag at varying distances from a fist.

Based on the results obtained from our experiment, we deter-
mined the maximum andminimum distances between adjacent tags.
These findings hold implications for the development of Tagnoo in
various item categories. For furniture items, such as desks, which
commonly come into close contact with relatively smaller objects
like lunchboxes, it is advisable to utilize a Tagnoo system with a
dense tag arrangement. After careful consideration of available
options, we have chosen a 10 cm distance in our implementation of
plywood material with a high tag density. This decision was made
to maximize signal strength, considering the marginal increase in
2D resolution compared to a relatively large loss in signal strength
(e.g., approximately 2dB drop from 10 cm to 8 cm). On the other
hand, when it comes to larger infrastructure components like floors,
which typically encounter objects with larger footprints, such as
feet, a more cost-effective approach can be adopted. In our imple-
mentation, we have positioned the Tagnoo tags at a distance of
approximately 30 cm for plywood material with a low tag density
(maximum 15 cm away from an object). This has led to a reduc-
tion in the fabrication cost of the system. Furthermore, we have
adopted a 20 cm distance for the plywood materials with medium
tag density.
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4.3 Experiment 3: Depth of Embedded Tags
Plywood is a composite material that is formed by bonding mul-
tiple layers of wood veneers together. The face side of plywood
typically shows a smoother and visually appealing surface. In our
implementation, we have strategically embedded RFID tags within
the veneer layers near the face side. It is thus important to consider
the potential impact of the thickness of the top veneer layer on the
signals emitted by the RFID tags. To investigate this, we conducted
an experiment by embedding the 3 × 3 RFID tags within the veneer
layers at varying depths from the plywood’s face surface. We ex-
amined the changes in signal strength across different thickness
levels, including a 0.025 cm (0.01 inches) veneer and plywood sheets
ranging from 0.32 cm to 2.54 cm thick.

Result. The results of this experiment are illustrated in Figure
6. It can be observed that the RSSI decreases as the thickness of
the plywood layers increases. Specifically, when a veneer layer
measuring 0.025 cm thick is placed over the RFID tag, there is a
reduction of 1.7dB in the RSSI. Furthermore, as the thickness of
the veneer layer increases beyond this point, the decrease in RSSI
exceeds 3dB. For our implementation, we opted to cover the RFID
tags with a veneer layer that is 0.025 cm thick to maximize signal
strength.

Figure 6: RSSI of the RFID tags placed at varying depths from
the plywood’s face surface.

4.4 Experiment 4: Gluing Strategies
During the fabrication process, a layer of veneer needs to be adhered
to the RFID tags and plywood substrate. However, the sensitivity
of these tags may potentially be compromised when covered with
wood glue due to the moisture present in the glue. To understand
the effects of wood glue on RFID tag performance, we conducted an
experiment to evaluate its impact on the signal strength. Since the
RFID tags are positioned near the face surface of the plywood, our
investigation focused solely on examining the effects of wood glue
applied on top of the 3×3 tags. Three adhesive strategies were tested:
(1) Full Coverage, where both the RFID tags and the gaps between
them were completely covered with glue, resulting in a uniform
distribution of glue across the entire surface of the plywood panel’s
interior (Figure 7a). (2) Gap Filling, which involved filling only the
gaps between the RFID tags and the edge of the plywood with
glue, ensuring that the top surface of the tags remained glue-free
(Figure 7b). (3) Edge Application, where the glue was exclusively

applied to the four edges of the plywood panel’s interior. This
approach allowed the top surface of the tags and the majority of
the surrounding gaps to remain free of glue (Figure 7c). To cover
the tags, a veneer layer with a thickness of 0.025 cm was used. For
the purpose of this study, Gorilla Wood Glue was chosen due to its
widespread usage in woodworking applications.

Result. The experimental results are depicted in Figure 7d. Our
findings indicate that applying wood glue directly onto the surface
of RFID tags significantly attenuates the RSSI. However, when the
glue is used solely to fill the gaps between the tags and the edges of
the plywood, its impact on RSSI is minimal. As illustrated in Figure
7d, there was a negligible difference in RSSI between Gap Filling and
Edge Application. However, Gap Filling, due to its larger surface
area for adhesion, potentially offers stronger bonding between
the veneer and plywood substrate compared to Edge Application.
Therefore, in our implementation, we apply wood glue exclusively
to these gaps.

Figure 7: An illustration of different gluing strategies that
were investigated in our study, which include (a) Full Cov-
erage, (b) Gap Filling, and (c) Edge Application. The regions
highlighted in orange indicate the areas that were covered
by glue. (d) RSSI of the RFID tags shown by different gluing
strategies.

5 UNDERSTAND THE IMPACT OF
WOODWORKING OPERATIONS

Woodworking operations, such as sawing or painting, may poten-
tially impact tag signals or cause damage to the tags. While it is
possible for the system to rely on the remaining unaffected tags, the
extent to which woodworking operations impact the functionality
of the affected tags remains unclear. We conducted a series of ex-
periments to address this question, specifically targeting common
woodworking operations such as sawing, screwing, nailing, and
painting.

5.1 Experiment 5: Sawing
The goal of this experiment was to investigate the potential con-
sequences of using a saw to cut plywood and its impact on RFID
signals. We aimed to examine the impact of a damaged antenna on
the signal strength of RFID tags. Specifically, a completely broken
chip definitely leads to tag malfunction, but since our RFID tag
has four antennas located at the corners, it is uncertain whether a
tag, with a single cut leaving only two antennas, would still main-
tain its functionality. To investigate this, we included two common
scenarios where tags undergo a straight-line saw cut: partially cut
and fully cut. The partially cut condition aimed to replicate cuts
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that only damaged the antennas of the RFID tags (Figure 8a), while
the fully cut condition was designed to assess the impact when
both the antenna and the matching circuit are damaged (Figure 8b).
We have intentionally excluded scenarios where the cut deviated
from a straight line, as our discussion with woodworkers has indi-
cated that the majority of common woodworking practices involve
cutting panels in straight lines.

We conducted our experiment using a 3 × 3 array of RFID tags
placed on plywood, with a distance of 10 cm between each tag. To
simulate antenna damage, we deliberately cut a half portion and
full portion of two antennas on the tags, as illustrated in Figure 8.
To determine whether the polarity of the tag changes when only
two antennas remain, we also tested their signal strength under a
90-degree rotation.

Result. The results of this study are presented in Figure 8, which
includes a tag without any damage as a baseline. Encouragingly, the
tested tags demonstrated resilience even when their antennas were
partially damaged, although there was a noticeable decrease in RSSI.
We did not observe a significant change in the tag’s polarity, as the
RSSI values of the rotated tags were similar to those of tags without
rotation. However, when the antennas were fully damaged, the
tags ceased to function. We suspect that this is because the damage
extended to the impedance matching circuit, located within 1.25
cm of the tag’s center. It is important to acknowledge that these
results may vary depending on the specific characteristics of each
tag. Nonetheless, this study highlights that our current implemen-
tation can withstand sawing during woodwork to a certain extent.
From a sensing perspective, the most unfavorable outcome would
be the loss of 10cm wide sensing areas along the edges of a cut
board, which appears to be acceptable. The primary objective of this
study was to investigate the damages caused by a saw. However,
it is reasonable to infer that the findings can be extrapolated to
damages caused by drills. Although drills may have different action
characteristics, they share common features with saws in terms of
the resulting damage to the tag, particularly in causing an open cut.
Therefore, it is plausible to generalize the observed patterns in this
study to damages caused by drills.

Figure 8: An illustration of how RFID tags were cut in our ex-
periment: (a) One side of the tag’s antennas was partially cut;
(b) One side of the tag’s antennas was fully cut; (c) the condi-
tion shown in (b) rotated by 90 degrees counterclockwise;(d)
RSSI of the RFID tags shown by the cutting conditions.

5.2 Experiment 6: Screwing
When inserting screws or nails, there is a potential for damage to
occur to a tag. However, the nature of this damage may differ from

that caused by cutting or drilling. This is due to the conductive prop-
erty of screws, which allows for a capacitively coupled connection
to the antenna. As a result, the screw may act as an extension of
the antenna, enabling it to receive and emit RF signals. In order to
understand the impact of screws on tag functionality, we conducted
a study in which we inserted screws at various positions of an RFID
tag affixed to a plywood surface. The purpose of this study was
to investigate the effects of screw placement on tag performance.
Figure 9a-c illustrates the three specific locations we selected for
screw insertion: (1) on the outer antenna, (2) on the inner antenna,
and (3) directly on the chip. These positions were chosen to cover
some of the most common scenarios for potential damage to RFID
tags.

Result. Figure 9d presents the collected RSSI data for the various
tested positions, along with a baseline measurement taken with-
out any damage. Our findings suggest that the tags were able to
withstand being screwed in as long as the screw did not cause any
damage to the chip. Interestingly, unlike cutting, screw damage
occurring on the inner antenna, close to impedance match circuit,
did not result in the tag ceasing to function. Instead, it only caused a
slight decrease in the RSSI. This observation can be attributed to the
conductive nature of the screw, which allows it to act as a functional
component of the tag. It is worth noting that this damage-prone
area only accounts for a mere 6 % of the total tag area. Upon careful
observation, no significant fluctuations in the RSSI values were
detected.

Figure 9: An illustration of the three different locations
where the screw was applied: (a) on the outer antenna, (b) on
the inner antenna and (c) on the chip of RFID tags. (d) RSSI
of the RFID tags shown by the tested screw locations.

5.3 Experiment 7: Painting
One of the final and crucial stages in the manufacturing process of
wooden items is the application of paint. However, there is a lack of
certainty regarding the potential impact that a thin layer of paint
commonly used on wooden items may have on the signal strength
of embedded tags. This uncertainty is further complicated by the
presence of moisture in certain types of paint, such as water-based
paints. To address this knowledge gap, we conducted an experiment
aimed at testing the effects of two different types of polyurethane
wood finishes on the signals of embedded tags. Specifically, we
tested a water-based polyurethane wood finish from Varathane and
an oil-based polyurethane finish from Minwax. These two finishes
were chosen based on their popularity and widespread use.
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To conduct this study, we developed three identical copies of our
prototype based on the findings from previous experiments. Each
prototype consisted of a plywood substrate with a grid of 3 × 3
RFID tags affixed to it. Additionally, we applied a 1mm thick veneer
layer using wood glue onto the tags. To understand the impact of
different paints on the RFID performance, we applied different types
of paint to the two prototypes. One prototype was painted using
water-based paint, another with oil-based paint, and the final one
was left unpainted to serve as a baseline for comparison. Following
the provided instructions, the surface of the prototypes was brush-
painted, ensuring that an even layer of paint covered the entire
surface. After painting, we allowed the paint to air dry for a period
of 24 hours before conducting the test to measure the RSSI.

Result. The results of the study are presented in Figure 10. The
findings indicate that there was a marginal decline in the RSSI
when measured on painted surfaces in comparison to the baseline.
Nonetheless, it is worth noting that despite this decline, the sig-
nals could still be consistently received in both water-based and
oil-based painted conditions. These findings suggest that the pres-
ence of a light layer of paint does not significantly impede signal
transmission. Therefore, it is unlikely that the performance of the
sensor will be significantly affected by the presence of paint.

Figure 10: RSSI of the RFID tags shown by the tested painting
conditions

6 FABRICATION
As previously noted, different categories of items may require vary-
ing tag densities in Tagnoo, depending on their intended applica-
tions. To achieve this, we fabricated several Tagnoo panels, each
measuring 122×122 cm in three types of tag densities: high (12×12
tags), medium (6× 6 tags) and low density (4×4 tags). The distances
between the tags for these different densities were set at 10 cm, 20
cm, and 30 cm, respectively, based on the findings from our prior
experiments. Compared to standard plywood, the costs for these
specialized panels rise by 8%, 2%, and 1% for the high, medium, and
low densities, respectively. High-density Tagnoo panels are suitable
for items that frequently come into contact with relatively small
objects, such as desk surfaces. Medium-density panels, on the other
hand, are designed for items that have less frequent interaction with
small objects, like chair seats. The slightly lower tag density still
provides adequate tracking capabilities for occasional contact with
smaller items. Low-density panels, with their larger tag spacing,
are intended for items that primarily come into contact with larger

objects, such as a floor. These panels provide sufficient tracking
accuracy for larger objects while minimizing costs.

The fabrication process of the Tagnoo panels involved a four-
step procedure. First, a unique material ID was assigned to the
first half of the Electronic Product Code (EPC) for each tag. This
assignment was carried out using a handheld RFID writer [27].
The material ID incorporates information about the tag’s density
and sequence number in the material. The remaining bits within
the EPC were reserved for potential future item ID assignments.
Next, the RFID tags were attached to a plywood substrate with a
thickness of 1.27cm. The alignment of these tags was executed in
accordance with the desired density. Next, following our gluing
strategy, a 1mm-thick veneer layer was firmly affixed on top of
the tags. The glue was then left to dry for a period of 24 hours.
Finally, to provide a protective and visually appealing finish, a layer
of water-based finish was applied onto the surface of the panel. The
structure of Tagnoo is illustrated in Figure 11.

Figure 11: The structure of Tagnoo.

7 HARDWARE AND SOFTWARE
IMPLEMENTATION

After setting up a space with items made of Tagnoo, our next step
was to enable activity sensing within this environment. Thus, we
designed a system that captured changes in tags’ RSSI values and fed
them into a data processing pipeline along with machine learning
algorithms to detect what happens in our experimental space. This
section elaborates on the design and implementation aspects of our
system.

7.1 Hardware
A typical sensing environment created using Tagnoo will have
hundreds of tags. To scan these tags, we used an R420 UHF RFID
reader in conjunction with two RFID antennas (Vulcan 262006).
Each antenna was strategically positioned to cover an adjacent area,
resulting in a combined coverage of approximately 320×250 square
centimetre. The antennas were mounted on the ceiling at a height
of 200 cm above the ground. To effectively scan the environment,
we switched between the antennas to read the tags within their
coverage areas. In our implementation, the system operated at a
sampling rate of approximately 1Hz. This sampling rate is sufficient
for detecting the presence of static objects or simple user activities,
such as sitting or standing on the floor. Note that higher sampling
rates can be achieved by higher-end RFID readers or antennas, such
as phased array antennas.

7.2 Data Processing Pipeline
In the data processing pipeline, the RSSI values of all the tags
present in the environment were sampled and processed. To elimi-
nate any ambient noise and account for baseline RF propagation, a
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background profile was subtracted from the RSSI readings. This sub-
traction enabled a more precise representation of the interactions
between the tags and objects or users. The background profile was
established by taking the maximum of the RSSI readings from all
the tags within a sliding window of 5 seconds. It was automatically
updated when no objects or users were detected in the environment,
indicating a period of inactivity, or when no tag reported a change
in RSSI values exceeding a preset threshold (3 dB).

When an object or user interacts with a piece of furniture or the
floor within the environment, our system detects their presence by
analyzing the changes in RSSI values from the tags embedded in the
furniture. This detection process involves summing up the changes
in RSSI values and comparing them against a predetermined thresh-
old (3 dB). If the summed change exceeds this threshold, the system
identifies the presence of an object or user. Once the system detects
this presence, it proceeds to monitor the standard deviation of the
summed changes. The system waits until the standard deviation
falls below a specific threshold (2 dB), within a 5-second time win-
dow. This indicates that the signal has stabilized and is ready for
further processing. Next, the system smooths the RSSI values us-
ing a minimum filter because an object attenuates RF signals. We
compute the relative changes in RSSI values for each tag, using the
background profile as the reference for initial values. This process
generates a series of RSSI data for each tag, arranged into a matrix
based on the tag location within the sensing surface of furniture
or floor. This data is then converted into a low-resolution image,
which is then upscaled using a factor equal to the tag distance.
For instance, the sensor data of a chair surface with a 3 × 3 tag
configuration, arranged at a medium density with a 20cm gap, is
upscaled to a 60 × 60 heatmap image. Similarly, the sensor data of
a desk surface with a 12 × 6 tag configuration, arranged at a high
density with a 10cm gap, is upscaled to a 120 × 60 heatmap image.
Following this, the upscaled images from all the sensing surfaces in
the environment are combined to form a single image, which can
be used for training and evaluating our machine learning model.

7.3 Machine Learning
We employed a Convolutional Neural Network (CNN) classifier to
tackle the classification of our sensor data, treating it as an image
classification task. To avoid overfitting and optimize computational
footprint and memory usage, we carefully designed our classifier
with a lightweight architecture. The architecture of our model
comprises four convolutional layers, with 8, 16, 32, and 64 filters,
respectively, all utilizing a 3 × 3 kernel size and Rectified Linear
Unit (ReLU) activation functions. These convolutional layers were
further augmented by max-pooling layers, which employed 2 × 2
poolingwindows to effectively reduce the spatial dimensions during
the feature extraction process. The flattened features were then
passed through a dense layer, consisting of 128 units, for subsequent
classification.

We train over 100 epochs with a batch size of 16. Each epoch
represents a complete pass through the entire training dataset,
allowing the model to learn and adjust its weights. The selected
batch size of 16 strikes a balance between computational load and
frequency of weight updates, thereby facilitating smoother con-
vergence. Throughout the training phase, the model undergoes

forward passes, generating predictions, and subsequently compar-
ing them against the actual labels using categorical cross-entropy as
the designated loss function. The backpropagation process follows,
adjusting the model’s weights to reduce error. The ’adam’ optimizer
aids in this by determining the learning rate and other parameters.
At most, our lightweight CNN classifier contains approximately
2 million parameters, resulting in a model size of around 16 MB.
This places our classifier in a similar range, in terms of size and
complexity, as traditional classifiers, such as the Random Forest
classifier, with a substantial depth (equivalent to approximately 32
trees).

8 CONSTRUCTING SMART ENVIRONMENTS
USING TAGNOO

One of the primary goals for developing Tagnoo was to create an
interactive material to facilitate the creation of smart environments
with sensing capabilities by woodworkers or end-users who may
not have traditional technical backgrounds. In order to demonstrate
and validate the effectiveness of Tagnoo as a material, we organized
a workshop involving two experienced woodworkers. The objective
of the workshop was to construct a small office environment using
our Tagnoo prototype.

The target environment for this workshop included a desk, chair,
bookshelf, and a small section of floor. We employed high-density
Tagnoo panels for the desktop, medium-density panels for the chair
seat and shelves, and low-density panels for the floor. These panels
could be used as a whole or cut into smaller sections to accom-
modate different furniture shapes and sizes. Considering that the
majority of use cases for Tagnoo involve flat surfaces to detect the
presence of daily objects, we focused on creating only flat surfaces
of the target items using Tagnoo. Therefore, the legs for the desk
and chair, as well as the vertical panel of the shelf, were purchased
off the shelf..

Procedure. Before we started the workshop, the woodworkers
were introduced to Tagnoo panels and were asked to work as a team
to create the desk, chair, bookshelf, and floor. While suggestions
regarding possible sizes for each item were given, the woodwork-
ers were not restricted in making their own decisions during the
crafting process. The final versions of these items were assembled
using wood screws. The design of the desk incorporated a Tagnoo
desktop, measuring 122×61 cm. The chair had a Tagnoo seat, which
measured 55×55 cm. The floor comprised two Tagnoo boards, each
measuring 122 × 91 cm, resulting in a total floor area of 122 × 182
cm. Finally, the bookshelf consisted of two Tagnoo shelves, each
measuring 80 × 28 cm. Note that the final bookshelf comprised a
total of three shelves. One of the shelves was intentionally included
without sensing capability and was positioned between the tagged
shelves. This arrangement aimed to investigate the potential for
sensing events occurring on the untagged shelf from the tagged
shelves. During the task, the participants decided to distribute the
various responsibilities among themselves. One participant took
charge of the cutting process, while another participant handled
the assembly. To facilitate the cutting of the desired pieces, a table
saw was provided, and a sander was used after cutting to ensure
the smoothness of the newly cut edges. After the completion of the
cutting tasks, the second participant completed the assembly task.
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This task involved drilling pilot holes in the predetermined loca-
tions and subsequently fastening the pieces together using screws,
thereby finalizing the furniture assembly process. Upon completion,
the finished furniture and floors were positioned below the RFID
antennas.

Result. The participants followed their usual workflow during the
task and successfully completed creating the target environment in
less than an hour. Figure 12 shows the outcomes of their work and
the arrangement of the items in a 320 cm by 250 cm open space.
Note that placing all the furniture on the floor resulted in limited
open space for user activities. Therefore, we decided to position the
furniture outside of the floor area. To gain insight into the number
of embedded tags within the finished environment, we examined
the furniture and the floor. Our findings revealed the presence of
3 × 3, 6 × 12, and 4 × 6 tags embedded within the seat, desktop,
and floor, respectively. Furthermore, one of the shelves contained
1 × 4 tags, while the other shelf had 2 × 4 tags. We also examined
the functionality of the tags and found that some of the tags had
malfunctioned due to the cutting process. Specifically, inside the
shelf, including a grid of 2 × 4 tags, only one row of these tags
remained operational. This particular shelf was found in the lower
position of the bookshelf. In contrast, no broken tags were found
in the rest of the environment. It is worth noting that the RFID
tags operate independently of each other. Therefore, any broken
tags, whether damaged during the cutting or screwing processes,
become unreadable but do not negatively impact the readability of
the other tags within the environment.

Concerning user experience, the participant responsible for the
cutting operation stated that the Tagnoo panels exhibited compara-
ble stiffness and elasticity to regular plywood. They observed no
apparent differences while cutting it. However, he did encounter
an issue with the edges of the plywood, which exhibited uneven
tear-out and splintering after the cutting process. This particular
issue is not observed with regular plywood. As a result, further
finishing was required to address this problem. This issue can pri-
marily be attributed to the manual attachment of the veneer layer
and could be easily resolved using higher-end professional tools.
They did not perceive any noticeable difference during the pre-hole
and assembly processes.

9 EVALUATION
We conducted an experiment to measure the sensing performance
of the smart environment that was created in the workshop. The
goal of this experiment was to measure the accuracy of the system
in detecting the presence of objects and user activities as described
in the previous section.

9.1 Objects and Activities
In our experiment, we tested a total of 18 objects and user activ-
ities, primarily selected from the scenario described in Section 3
(Figure 13). Specifically, we tested 8 events on the desk, including
the presence of a 16-inch laptop, a user typing on the laptop, a
chocolate bar, a craft hardboard, a book, a glass lunchbox, the glass
lunchbox filled with rice, and a backpack. For the bookshelf, we
conducted tests on 4 events, which involved placing a book on the
top, middle, and bottom shelf, as well as having a user standing
next to the shelf. On the chair, we tested 3 events, which included

a user sitting on the chair, an empty backpack placed on the chair,
and the same backpack with the 16-inch laptop inside. Lastly, on
the floor, we tested 3 events, which involved a user sitting, standing,
and lying on the floor. The selection of object and event locations
was based on their natural and logical occurrence within the tested
environment.

9.2 Participants
Ten right-handed participants were recruited for the user activities,
including typing on a laptop, sitting on a chair, standing next to
a shelf, and various positions on the floor (standing, lying, and
sitting). The participants had an average age of 22 years, with five
males and five females. A volunteer carried out data collection for
the objects.

9.3 Data Collection
A volunteer was invited to collect the training data for the machine
learning model. The volunteer was asked to place each of the tested
objects inside the sensing area of each item in a random location,
orientation, and order. No other instruction was given in terms of
how the objects should be presented to the sensor.

For the data on user activities, participants were instructed to
carry out each activity ten times without any restrictions on their
body position or orientation within the sensor. For instance, when
typing on the laptop, participants placed the laptop anywhere on
the table and proceeded with typing. To simulate searching for
books near the bookshelf, participants varied the trials by choosing
different locations in front of the shelf. For activities performed
on the floor, participants stood and sat at different locations with
random body orientations. When lying on the floor, half of the trials
had the participant’s head positioned on one end, while the other
half had the head positioned at the opposite end. The raw data
confirmed that objects and activities occurred across a wide variety
of locations and orientations, including those in close proximity to
the center, as well as those took place near the edges or corners of
the sensors.

As described in the Data Processing Pipeline section, the sensor
data obtained from the entire environment, including the table,
chair, bookshelf, and floor, was combined into a single heatmap
image for model training and testing.

9.4 Results
In this section, we present the results of our study on the recog-
nition accuracy of Tagnoo. Particularly, we present the system’s
performance by comparing the use of a single general model for
the entire environment with the use of individual models for each
item in isolation.

9.4.1 General model accuracy We first evaluated the sensing accu-
racy of our system by treating all furniture and the floor as a unified
environment as illustrated in Figure 14. We employed a two-fold
cross-validation using a model trained on all the data collected from
the desk, chair, bookshelf, and floor. The results of our evaluation
demonstrated that our system achieved an accuracy of 93.9% (SD
= 5.9). Examining the confusion matrix of the result revealed that
out of the 18 tested objects and activities, 14 of them achieved an
accuracy higher than 90%. This finding is particularly encouraging
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Figure 12: (a) A desk, chair, bookshelf, and floor were constructed in the workshop. The furniture and floor surfaces circled in
red are made of Tagnoo. (b) The floor layout shows the arrangement of these items.

Figure 13: The full list of tested objects and activities. The events tested on the desk include (a) a 16-inch laptop, (b) a user typing
on the laptop, (c) a chocolate bar, (d) a craft hardboard, (e) a book, a glass lunchbox, (f) the glass lunchbox filled with rice, and
(h) a backpack on the table. The events tested on the bookshelf include (i) a book on the top shelf, (j) a book on the middle shelf,
(k) a book on the bottom shelf, and (l) a user standing next to the shelf. The events tested on the chair include (n) a user sitting
on the chair, (m) an empty backpack placed on the chair, and (o) the same backpack with the 16-inch laptop inside. Lastly, the
events tested on the floor include (p) a user sitting on the floor, (q) a user standing on the floor, and (r) a user lying on the floor.

as it suggests that our system is capable of accurately recogniz-
ing and distinguishing between objects that possess similar shapes
but differ in material composition. For instance, objects such as a
book, an empty lunchbox, and a lunchbox filled with rice, all of
which share a rectangular shape, were successfully identified by
our system with relatively high accuracy.

On the contrary, our result revealed that the majority of misclas-
sifications occurred when the system attempted to determine the
specific shelf where a book was positioned. This can be attributed
to the fact that the sensor data collected from the top and bottom
shelves alone were inadequate for accurately identifying an object
placed on the middle shelf, which was not augmented with Tagnoo.
Furthermore, we observed that user movements on the floor also
caused some confusion for the system. This can likely be attributed
to the diverse body shapes of our participants, resulting in varying

levels of obstruction to the RF signal. As a consequence, our model
faced difficulties in accurately discerning the specific activity being
performed by the users.

9.4.2 Item-specific model accuracy In addition to assessing the
overall accuracy of our general model, we measured sensing accu-
racy for each individual piece of furniture and the floor. To do this,
we performed a two-fold cross-validation for each model trained
using the specific data collected for each item while excluding data
from the remaining environment. The results also revealed a high
level of accuracy for each item, with the table achieving 95.3% accu-
racy (SD = 4), the bookshelf achieving 91.2% accuracy (SD = 6.8), the
chair achieving 94.2% accuracy (SD = 9.0), and the floor achieving
91.6% accuracy (SD = 4.7). The corresponding confusion matrix can
be found in Figure 15.
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Figure 14: The confusion matrix of the general model accuracy.

Figure 15: The confusion matrix of the item-specific model accuracy.

The results of the study indicate instances where the sensing
accuracy was compromised when a complete picture of sensor data
from the surrounding environment was not available. Specifically,
the identification of joint events occurring across different pieces of
furniture was hindered. For instance, when the data from the chair
is excluded from the model, there is a misclassification of typing on
the laptop, often confusing it with the laptop being placed solely
on the table. This misclassification can be attributed to the absence
of data regarding someone sitting in the chair, causing the system
to inaccurately attribute the activity solely to the table. To further
investigate the influence of missing the surrounding environment,
we intentionally incorporated the data collected on the chair with
participants standing between the chair and the bookshelf. Unlike

in the general model, the data collected on the bookshelf was ex-
cluded. The analysis revealed that the model frequently confuses
situations where only a bag is present on the chair with situations
where a person is standing between the chair and the shelf. This
finding suggests that when developing a model for individual smart
items, a more comprehensive set of test scenarios should be consid-
ered to minimize false positives. Interestingly, we did not observe
any significant increase or decrease in average accuracy for the
bookshelf and floor. This can be attributed to the fact that in the
tested environment, the events that took place on these items were
more dedicated to the items themselves.



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Su et al.

10 LIMITATION AND FUTUREWORK
In this section, we acknowledge the limitations of our study and
provide an overview of our key findings. We also explore the impli-
cations of these insights and suggest potential avenues for future
research to address unanswered questions and expand on our find-
ings.

10.1 Detecting and Locating Multiple Objects or
Users

Our current implementation relies on a simple machine learning
algorithm to detect the presence of an object and user by analyzing
the RSSI values of the tag grid. While this approach works well for
simple scenes, it may not be suitable for more complex scenarios in-
volving the simultaneous locating and tracking of multiple objects
or users, particularly in the presence of multi-path signals. To tackle
this challenge, utilizing a deep learning model might offer a more
robust solution [60, 100]. However, incorporating deep learning
models into our system is not without its difficulties. One major
concern is the potential interference between objects, which can
hinder the accurate sensing of material information. For instance,
when two objects are in close proximity, their RSSI patterns may
overlap, leading to difficulties in distinguishing between them. This
overlap poses a significant challenge that needs to be addressed.
One possible approach to address this challenge is by employing
a super resolution network model [38, 70]. This approach has the
potential to generate higher-resolution data by uncovering hidden
information within the low-resolution data. By enhancing the res-
olution of the data, it may become easier to distinguish between
overlapping RSSI patterns and accurately identify individual objects
or users. However, it is important to note that further exploration
and validation are required to determine the effectiveness of this
approach.

10.2 Latency
Our current research primarily centers onmaterial-related concerns.
As a result, certain technical improvements have been omitted from
the scope of this study. A notable technical limitation is the sam-
pling rate limitation of our current system, which poses a challenge
to work effectively in an environment with a higher number of RFID
tags or to accurately recognize fine-grained user activities, such as
writing and erasing on a desk. To address this limitation, we pro-
pose two potential solutions: adaptive sampling and beamforming.
Adaptive sampling is a technique that strategically allocates com-
putational resources to specific areas of interest while minimizing
focus on peripheral regions. In our context, this means that we can
prioritize the sampling of RFID tags that are closer to the occurrence
of an event of interest. This approach can be achieved during the tag
singulation process, where only the tag corresponding to the serial
string provided by the system is activated. By selectively sampling
tags in proximity to the event, we can improve the sampling rate
of the system. Another promising solution is beamforming, which
involves directing RF signals in specific directions. This reduces
conflict resolution time, as fewer tags are present in the targeted
scan areas. Additionally, beamforming enables the coordination
of multiple RFID readers to scan various regions simultaneously,

thereby enhancing the overall sampling rate. By combining adap-
tive sampling and beamforming techniques, we can significantly
increase the RFID reading rate and potentially achieve fine-grained
activity recognition in a larger-scale environment.

10.3 Sensing Beyond a Fixed Environment
Our current sensing approach operates effectively in a fixed envi-
ronment where the furniture’s location remains constant. However,
in real-world scenarios, it is common for changes to be made re-
garding the arrangement and layout of household items within
the environment. Additionally, the location or orientation of the
household items may also be subject to change, which can affect
the sensor readings and subsequently impact recognition accu-
racy. To address this issue, it is essential to develop a generalizable
model that takes into account the arrangement layouts of items
and the locations of the RFID antenna. This information can be
manually provided by workers during the construction of the envi-
ronment, or it can be automatically estimated using RFID readers
equipped with localization techniques [45, 66, 109], such as Impinj
xArray Gateway RFID Reader [28]. By incorporating this informa-
tion, the system could potentially accommodate the changes within
the smart environment. Nevertheless, this approach necessitates
careful investigation in the future to validate its effectiveness.

10.4 Capabilities Beyond RF Sensing
The focus of our research revolves around computational materials
that possess sensing, computing, and communication capabilities.
We developed Tagnoo as an example of such a material due to its
batteryless nature, cost-effectiveness, and resilience against fabrica-
tion operations. Tagnoo’s inherent computing and communication
abilities make it a promising candidate for easy integration with
additional functionalities beyond RF sensing. One possible aug-
mentation for RFID tags is capacitive sensing. Recent studies have
explored the potential of enhancing RFID tags with capacitive sens-
ing capabilities [36, 90]. This additional feature expands the range
of applications that can be addressed by Tagnoo. Moreover, the
memory capacity of RFID tags can be leveraged to enable novel
applications. For instance, objects created using Tagnoo can store
meta-information within the memory of the RFID tags. This infor-
mation can then be accessed and manipulated through augmented
reality AR interfaces. Such an integration would enable users to
interact with the physical environment in a more immersive and
dynamic manner, bridging the gap between the physical and virtual
worlds.

10.5 Comparison with RF Sensing Using
mmWave Radar

It is worth noting that mmWave radar sensors offer similar sensing
capabilities but through the use of electromagnetic waves for captur-
ing the three-dimensional geometry of an environment. These sen-
sors can be likened to "cameras" that operate using high-frequency
waves. One distinct advantage of mmWave radar is its ability to
function effectively in various environmental conditions, includ-
ing low light or obstructed environments such as walls or fog.
However, mmWave radar tends to exhibit lower sensing resolu-
tion when the sensing range is long [38]. In contrast to mmWave
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radar, the approach adopted by Tagnoo leverages the density and
strategic placement of RFID tags in order to optimize sensing resolu-
tion. While our current implementation may not offer an extended
sensing range, this limitation can be overcome by incorporating
higher-end RFID readers and antennas [26]. Moreover, mmWave
radar systems often prove to be expensive and power-intensive, par-
ticularly for long-range applications, which contradicts the goals of
computational materials. In contrast, our system provides a more
energy-efficient and cost-effective solution. At present, we are ac-
tively exploring methods to extend the reading range of Tagnoo
without compromising the sensing resolution. By doing so, we aim
to enhance the overall effectiveness and functionality of our system.

10.6 Recycle of Tagnoo
The integration of RFID tags in plywood poses new challenges in
the recycling process. If these tags are not disassembled properly,
they could contaminate recycled wood streams or emit harmful
substances during incineration. To address these issues, our future
research will focus on a two-step solution. Firstly, we plan to refine
the design of Tagnoo to incorporate an easy-to-dismantle mech-
anism. Our objective is to develop a design that guides users to
easily access and remove the RFID tags before initiating the recy-
cling process. Secondly, we aim to develop spectral sensing and
analysis tools that can be deployed at recycling centers. These tools
will enable the seamless identification and separation of Tagnoo
products from regular plywood. This way, we can accurately distin-
guish Tagnoo products, based on their unique characteristics and
ensure that different components of Tagnoo receive the specialized
recycling treatment it require.

10.7 Upcycling
Tagnoo offers a unique opportunity for the upcycling of furniture
and household items, transforming them into new creations that
serve different purposes. Similar to existing furniture, Tagnoo can
be repurposed into various items, granting them a second life. How-
ever, what distinguishes Tagnoo is its digital properties, which can
be inherited by these new items. This inheritance enables the upcy-
cled items to become interactive and seamlessly integrate into the
smart ecosystem.

10.8 Privacy Control
Users may have a desire to disable the sensing functionality of
Tagnoo in certain situations. Although the entire smart environ-
ment can be deactivated by turning off the RF antennas and readers,
selectively disabling a specific item composed of Tagnoo furniture
presents a challenge at present. To tackle this issue, one potential
solution is to design a user-friendly toolkit that enables users to
easily shield the tags embedded within the plywood, by utilizing
a metallic cover. Another potential solution involves the creation
of methods to enable the RFID reader to bypass the group of tags
within a desired item.

10.9 End-User Tools
End-user tools play a crucial role in the democratization of computa-
tional material. In our future research, we plan to develop end-user
tools that will facilitate the seamless configuration of tag positions

and distributions within diverse material designs. Additionally, we
aim to design tools that will ease the machine learning pipeline,
guiding users through the process of data collection, model training,
and implementation in real-world scenarios. With these tools, our
objective is to empower end users, irrespective of their technical
background, with the capability to customize the functionality of
their Tagnoo-enhanced objects to meet their specific needs and
preferences.

11 Conclusion
Tagnoo addresses the significant challenges associated with the
implementation of room-scale smart environments using computa-
tional materials. Not only does Tagnoo offer a cost-effective and
battery-free solution, but it also seamlessly integrates into existing
woodworking workflows, enabling woodworkers to easily create
smart furniture and infrastructure. By overcoming obstacles related
to battery consumption, cost, material form factor, and damage
resistance, Tagnoo paves the way for the widespread adoption of
smart environments that seamlessly blend into our physical sur-
roundings. The impact of this research extends beyond the scope
of this paper. It presents exciting possibilities for a future where
everyday materials can actively sense and respond to user activities.
This work has the potential to serve as a practical solution to revo-
lutionize homes and workplaces, blurring the boundary between
the digital and physical worlds.
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