

Proxino: Enabling Prototyping of Virtual Circuits
with Physical Proxies

Te-Yen Wu1 Jun Gong1 Teddy Seyed2 Xing-Dong Yang1

1 Dartmouth College 2 University of Calgary
{te-yen.wu.gr, jun.gong.gr}@dartmouth.edu teddy.seyed@ucalgary.ca

xing-dong.yang@dartmouth.edu

Figure 1. Proxino allows users to (a) interact with virtual circuits using physical proxies (e.g. linking a virtual
component to a physical flex sensor and interacting with it), (b) remotely collaborate and share resource with
others (e.g. a buzzer can be controlled by a remote IR transmitter and receiver), and (c) prototyping circuits
ubiquitiously with build-in proxies (e.g. using built-in proximity sensor as the physical proxy of distance sensor).

ABSTRACT
We propose blending the virtual and physical worlds for
prototyping circuits using physical proxies. With physical
proxies, real-world components (e.g. a motor, or light sensor)
can be used with a virtual counterpart for a circuit designed
in software. We demonstrate this concept in Proxino, and
elucidate the new scenarios it enables for makers, such as
remote collaboration with physically distributed electronics
components. We compared our hybrid system and its output
with designs of real circuits to determine the difference
through a system evaluation and observed minimal
differences. We then present the results of an informal study
with 9 users, where we gathered feedback on the
effectiveness of our system in different working conditions
(with a desktop, using a mobile, and with a remote
collaborator). We conclude by sharing our lessons learned
from our system and discuss directions for future research
that blend physical and virtual prototyping for electronic
circuits.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
UIST '19, October 20–23, 2019, New Orleans, LA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6816-2/19/10...$15.00
https://doi.org/10.1145/3332165.3347938

Author Keywords
Circuit construction, breadboard, remote collaboration
CSS Concepts
• Human-centered computing → Human computer
interaction (HCI) → Interactive systems and tools → User
interface toolkits
INTRODUCTION
Software-based tools for circuit prototyping (e.g., Tinkercad
Circuits [10]) are increasingly used by novice makers in
projects that involve electronics. Typically, these tools
include a virtual breadboard to help a user construct and test
a circuit. However, circuits designed and created on a virtual
breadboard cannot be interacted with physically. This
becomes an issue when prototyping interactive artifacts that
involve input or output (I/O) components (e.g. sensors and
motors), as a user typically needs to interact with the
components physically, in a real environment.

To address this challenge, we propose a new breadboard
circuit prototyping environment that blends the virtual and
physical world, by enabling for the use of real I/O
components (e.g. a motor, or flex resistor) as a physical
proxy of their virtual counterparts, in a circuit designed and
constructed in software. The physical proxies themselves
behave as though the entire circuit created virtually is real.
Using this approach, a user can then interact with virtual
components physically (Figure 1a).

By allowing users to take the advantage of both the virtual
and physical world, we create a new environment that

Session 1B: Software and Hardware Development

UIST '19, October 20–23, 2019, New Orleans, LA, USA

121

https://doi.org/10.1145/3332165.3347938
mailto:Permissions@acm.org
mailto:xing-dong.yang@dartmouth.edu
mailto:teddy.seyed@ucalgary.ca
mailto:jun.gong.gr}@dartmouth.edu
https://te-yen.wu.gr

enables several other scenarios for novice makers, in which
I/O circuits can be designed, constructed, and tested. One
example scenario is when the user is working on a project but
missing a crucial I/O component to test an idea, such as a
motion detector for security. The user can now receive help
from a remote collaborator with whom they can share their
virtually created circuit. The remote collaborator uses a real
IR sensor as a remote proxy of the circuit and shows the user
how it functions when motion is detected (Figure 1b). This
way, the user does not need to have the sensor to test and
iterate upon the idea. Essentially, it is now possible for both
users to share their physical resources (e.g. sensors and
actuators) using remote proxies.

Another example is when a user desires to continue learning
a circuit but has no access to their breadboard or physical I/O
components (e.g. they are using a tablet or mobile device on
a long bus ride). The user can now continue to develop the
circuit on a tablet and use the built-in I/O components (e.g.
proximity sensor or accelerometer) of the tablet as a proxy
for physical interactions. (Figure 1c).

To demonstrate technical feasibility and new possibilities
enabled by this new circuit prototyping environment, we
developed a tool, called Proxino. The tool is comprised of
three parts: (1) frontend software, developed as a part of
Fritzing [7], that allows novice users to create virtual
breadboard circuits and program them in Arduino, (2) a
hardware device in the form of an Arduino UNO shield, that
interfaces physical proxies and a virtual breadboard circuit,
and (3) a backend server that runs the virtual breadboard
circuit in a simulator and handles data synchronization
between the shield, the user’s Arduino code, and remote
nodes during remote collaboration sessions.

The contributions of this paper are: (1) the concept of using
real I/O components as a physical proxy to interact with
virtual circuits; (2) an exploration of the application space of
using a physical proxy; (3) the implementation of a
prototype, Proxino; (4) a system evaluation and initial user
feedback of our tool; and (5) a set of applications and
interactions enabled by Proxino.
RELATED WORK
Hardware Circuit Prototyping Tools
Prototyping interactive artifacts with electronics has become
increasingly accessible due to the recent development of
open-source hardware platforms (e.g., Arduino [2], Phidgets
[19], or Microsoft .NET Gadgeteer [38]). However, novice
makers often lack basic knowledge in electronics before they
can start building things. Tools that leverage generative
design [12] are very useful for the beginners to test their
ideas. One challenge with this approach is that (novice) users
may forego the opportunity to learn and enjoy the process of
designing their own circuits. However, physically
constructing electronic circuits on a breadboard have been
shown to be prone to many types of errors [15, 32]. A study
conducted by Booth, et al. [15] showed that hardware errors
are almost always inevitable despite experience level in

electronics. Common errors reported from their study include
miss-wiring, incorrect component, missing components, and
bad seating. Projects like CircuitStack [39] can mitigate
wiring errors, while many other hardware errors (e.g., bad
seating) do not occur in software. As such, software circuit
prototyping tools are becoming increasingly popular.

Aside from using a virtual breadboard for prototyping, many
other tools have been developed in the past several years to
assist in the creation of electronic devices [16, 21-26, 30, 33-
35]. For example, with Exemplar [18] and PICL [15], a user
can create sensor-based interactive artifacts using
“programming by demonstration”. Children can develop
electronic hardware using augmented toys like LEGO bricks
embedded with sensors and actuators [35]. A major
difference between these approaches and breadboard
prototyping, is that these tools are all restricted to a specific
platform, which means that a user does not have complete
freedom in creation (e.g. platform might be missing an
accelerometer). In contrast, a breadboard is much more
flexible but of course more difficult to use.

Aside from hardware errors, adjusting breadboard
components (e.g., different resistors) is also challenging on a
physical breadboard. To address this problem,
VirtualComponent [27] provides a mixed reality system with
a custom breadboard that preloads several possible
components into PCB modules, and a user can dynamically
place components and see values and potential errors. A
similar approach can be found in Scanalog [37], whose goal
is to facilitate the design and debugging of analog circuits
through a dataflow programming paradigm using functional
modules, instead of components and breadboard circuit.
LabView [8] is a commercial product, which also uses a
dataflow paradigm, but for the design of complex electronic
systems. The tool was designed for professional users and
requires a specialized hardware setup.
Software Circuit Prototyping Tools
Many commercial software has been developed to facilitate
PCB design [1, 14]. However, these professional tools while
effective, are not especially tailored for novice makers. As
such, software emphasized on breadboard circuit prototyping
[10, 11, 28] has gained wide adoption in the novice maker
communities. For example, TinkerCad Circuit [10] allows
users to construct a breadboard circuit using a virtual
breadboard and electronic components. It also offers a
simulator for users to test and debug the function of their
circuit designs. The software also supports remote
collaboration and most noticeably the simulation of the
behavior of common input and output components. One key
limitation is that a user’s design is entirely virtual, and thus
cannot be directly interacted with in the physical
environment.
Circuit Debugging Tools
The fact that circuit errors are unavoidable motivated a
separate line of research and commercial products in
supporting circuit debugging. For example, Digilent
Electronics Explorer [6] is a breadboard that allows users to

Session 1B: Software and Hardware Development

UIST '19, October 20–23, 2019, New Orleans, LA, USA

122

Figure 2. System walkthrough. (a) A user designs a circuit on software and links the photoresistor as a physical proxy, where an
instruction window will pop up. (b) The user can test the circuit by physically interacting with the component (c) The user can
remotely collaborate with others for help. The circuit in the both sides are connected and working together (d) Finally, the circuit
can be directly deployed with a WiFi module.

debug breadboard circuits through built-in oscilloscope,
pattern generators, and logic analyzer. The challenge is that
novices may not have the background to operate these tools.
As a result, an area of research arose focusing on easing the
debugging process through the visualization of a circuit’s
internal state. Toastboard [17], Bifrost [31], and CurrentViz
[40] are examples. A key observation of these works is that
sensing the location, type, and value of the breadboard
components play a key role in easing the debugging process.
Although little research has focused on this space,
CircuitSense [41] has shown the feasibility of recognizing
some of the common electronic components using a sensor
setup that is somewhat bulkier than a regular breadboard.
PHYSICAL VS VIRTUAL CIRCUIT
The benefits of virtual and physical circuits are
complementary to each other. Taking advantage of both sides
can enable a much more powerful tool. This section provides
a brief discussion on some of the benefits of physical vs
virtual circuit prototyping.

Physical circuits. Circuit prototyping using a physical
breadboard and real electronic components is the default
approach for many novice users. The benefit is obvious as
the constructed circuit is real and thus can be tried or tested
immediately in a real environment. This is important for a
number of reasons. First, the behavior of a circuit can be
precisely observed and adjusted in the environment, where
the circuit components are operating. This is particularly true
for circuits involving sensors or actuators. For example, the
threshold of a photoresistor can be precisely determined in a
real environment where the sensor is being used. Similarly, a
user can only tell if the torque of a motor is strong enough for
a certain project by testing the real motor itself (without
doing all the math and physics). Second, with real input and
output components, the finished project can be demonstrated
to others. Finally, the project can be deployed right away if
needed. This is not possible using software as the user must
first manually replicate the design on a physical breadboard.

Virtual breadboards. Circuit prototyping with software has
become increasingly popular among novice makers. A user
can now use virtual breadboards and circuit components to
create their projects. Testing and debugging a finished circuit
is also possible with a simulator. Circuit design using
software has a number of unique benefits over a physical
breadboard. For example, the user does not have to maintain

an inventory of common electronic components that may
have varying types and values (e.g., ICs, resistors, or
capacitors, etc.). This is a common barrier for novice makers
who begin prototyping. Additionally, features like
copy/paste, undo/redo, tooltips, autocomplete [29], and
remote collaboration [10] have made circuit prototyping
through software an efficient and less error-prone experience
for novices. Finally, virtual circuits can be easily stored,
documented, and shared among different users, groups and
even across different locations via the Internet. This is not as
easy using a physical breadboard. However, the major
drawback of using software is the disconnection between a
user’s finished virtual circuit from the physical world.
Although many state-of-the-art simulators are effective in
replicating circuit behaviors, a user’s interaction with the
circuit remains entirely virtual.
PROXINO WALKTHROUGH
To embrace the benefits of physical and virtual circuits, we
propose using a physical proxy as the link between the virtual
world and physical world. That is, users can augment parts of
their virtual circuit with virtual components using real
components, when they need to physically interact with
components. This section demonstrates a running example to
illustrate some of the capabilities of our system Proxino. The
example is a Nightlight circuit, which uses a photoresistor to
sense the intensity of room light and automatically turns on
an LED if the light intensity drops below a threshold value.

Alice is a beginner, who reads an online tutorial of a
Nightlight circuit and starts slowly to build it using Proxino’s
software. Before she starts, she is worried because she does
not have the right type of resistor. However, using the
software, she is glad that it allows her to specify a resistor
value virtually. She starts to drag a photoresistor, an LED,
and a resistor one-by-one into the virtual breadboard. She
copy-and-pastes a second resistor for convenience. She sets
the resistor value and connects her chosen components one
by one, following the tutorial. She uses undo a few times to
recover from errors (Figure 2a).

Once the circuit is completed, Alice wants to see how it
works in her room. She brings up a context menu on the
software by right-clicking the virtual photoresistor. In the
menu, she clicks “Physical Proxy” to link the photoresistor to
a physical proxy. She then follows the instructions shown in
the software to connect her physical photoresistor to the

Session 1B: Software and Hardware Development

UIST '19, October 20–23, 2019, New Orleans, LA, USA

123

desired pins on the Arduino shield (Figure 2a). She repeats
the same procedure to setup the LED. Once finished, she
codes in the built-in IDE by following the sample Arduino
code. She clicks the “Run” button to execute the circuit in a
simulator. However, the LED does not turn on when she
covers the photoresistor using her hand (Figure 2b).

Alice calls her friend, Derek for help on Skype. Derek is an
experienced maker, who accesses Alice’s virtual breadboard
remotely from his home computer to help her with debugging
(Figure 2c). The circuit seems fine when inspected, so Derek
suspects that Alice’s photoresistor or LED is broken.
Unfortunately, Alice does not have a second photoresistor.
Derek offers to try his photoresistor at his home and uses it as
a remote proxy. Alice disconnects her photoresistor from the
shield on her side, while Derek connects his on his side.
Derek is correct. Alice’s LED turns on as expected, when he
covers the photoresistor (Figure 2c).

The next day, Alice purchases a new photoresistor to replace
her defective one. Just like a real breadboard circuit, she can
deploy the finished project in her room. The system includes
the photoresistor, LED, an Arduino and the shield. Alice
further uses Arduino Uno WiFi Rev2 for the communication
between the proxies and virtual circuit running on her
desktop computer. Alice is happy that there is no breadboard,
resistors, and messy wires in her room (Figure 2d).
PROXY DESIGN SPACE
We present the design space of using a physical proxy for
common circuit components in four dimensions.
A1: Component Type
Different types of electronic components can be used as a
proxy for a virtual circuit. To facilitate the discussion, we
describe our classification of components into 3 categories
based on their roles in supporting physical interactions with a
breadboard circuit: (1) supporting components, (2) input
components, and (3) output components.

Supporting components are the building blocks used to form
functional circuits for input and output components.
Common supporting components include integrated circuits
(ICs) (e.g., H-bridges and amplifiers) and basic components
like resistors, capacitors, inductors, diodes, and transistors,
etc. Physical supporting components preserve the behavior
of the circuits, and thus may lead to more realistic signals.
However, some supporting components have many different
types and values. Maintaining an ample inventory of them
can be challenging for novice makers, especially if they don’t
entirely understand the function of all the components. For
our current implementation of the system, we did not support
components which are not interactive.

Input components are input devices (e.g., buttons) or sensors
(e.g., photoresistor). Many input components need to be used
with basic components or ICs to function properly or safely.
For example, a PIR sensor needs an amplifier for increased
signal amplitude for high-resolution data processing. Input
components can be either virtual or physical. For example, a

user often needs to interact with input components physically
to provide input or collect data from the environment.
Therefore, a physical proxy can be helpful. Virtual input
components are useful in scenarios where physical
interaction is not a need, or the required physical components
are unavailable (e.g. a user did not purchase one).

Output components are output devices such as LEDs or
motors. Similar to input components, many output
components also require an appropriate basic component or
IC to work properly. A DC motor is an example as it requires
a motor driver or transistor to operate with an Arduino. Some
output components can benefit more from a physical proxy
than others. For example, a real servo motor has a clear
advantage over the virtual one if the user wants to test how
well it works to actuate a physical object. A virtual LED, on
the other hand, can perhaps be as useful as a physical one for
the sake of feedback. However, lighting a real LED could
give the user a more engaging experience.
A2: Proxy Type
The physical proxy can be a singleton or module. The
singleton has only one I/O component. Many singletons do
not function properly on its own without a supporting
component(s). A module, on the other hand, is an electrically
functional circuit, composed of an I/O component and one or
more supporting components. For example, a photoresistor
module is composed of a photoresistor (input component)
and a resistor (base component), which works independently
if powered.
A3: Proxy Location
Virtual circuit prototyping can take place collaboratively
among different users either locally or remotely. During
remote collaboration, the physical proxy can be collocated
with the user or located in a remote location. This allows
users in different locations to have shared access to
distributed physical resources only available in a remote site.
A4: Proxy Module Form
I/O modules can go beyond their regular form and utilize the
built-in I/O devices on a smartphone, tablet, or laptop. For
example, the user can develop a virtual circuit on a tablet and
use the device’s built-in accelerometer as the physical proxy
of the virtual one. This way, the software and the physical
proxies of the virtual components are integrated into a single
device, largely increasing the mobility of the system.
EXAMPLE APPLICATIONS
We implemented 5 applications to demonstrate each point in
the proxy application space through three areas.
Circuit Prototyping Using Software and Physical Proxy
Physical input and output components (A1, A2)
One of the most useful use cases of Proxino is to create the
virtual circuit in software and use physical proxies for input
and output. Not only does this allow a user to interact with
the circuit physically, it also prevents the user from
maintaining a large inventory of basic components and ICs in
order to learn, practice, and prototype breadboard circuits.

Session 1B: Software and Hardware Development

UIST '19, October 20–23, 2019, New Orleans, LA, USA

124

Additionally, hardware errors, such as lose cabling can be
largely avoided by using the software. All of these can
potentially make breadboard circuit prototyping more
accessible to the novice users. The example with Alice
shown earlier demonstrates a use case of this scenario.
Virtual input component and physical output component (A1)
The flexibility of what can be used as a proxy satisfies
varying needs for users. If Alice wants to modify her project
to be a smoke detector, she can try her new idea by replacing
the photoresistor with a gas sensor in the software and adjust
the sensor value virtually to see if it works with her current
circuit and LED (Figure 3a). This way, she does not need to
buy the sensor first before she can test out her idea.
Physical input component and virtual output component (A1)
Alice likes the idea of the smoke detector, but after she
purchases the gas sensor, she figures that she wants more
than just an LED. She tries out different output components
in the software and finds that the buzzer, which makes a
noise through her computer’s speaker as an alert, is a better
option for her instead.
Remote Collaboration and Resource Sharing (A3)
Using the software allows two remote users to collaborate on
a project via a shared virtual breadboard. With the physical
proxy, the benefit of Proxino goes beyond remote
collaboration because the users now have a shared access to
distributed physical resources, such as I/O component and
environment only available in a remote site. In the scenario
with Alice, she does not have to travel to Derek’s home to
use the photoresistor. It is also possible for the users to access
the physical environment of a remote site. For example, a
user can test how well his/her light flicker detector work in a
remote collaborator’s home by having a photodiode on the
collaborator’s side as a proxy without having to travel to a
location with a flickering ceiling light (Figure 3b).

Figure 3. The applications of Proxino. (a) a user drags virtual
gas to adjust the value of a gas sensor to test if it works with a
physical led. (b) a user test how well the light flicker detector
works at a remote collaborator’s home.

Ubiquitous Circuit Prototyping (A4)
With Proxino, circuit prototyping is more accessible in
mobile scenarios as a user only needs to carry the Proxino
hardware and I/O components. Circuit can be designed on a
tablet. This way the user can try their ideas anywhere, and it
can be useful for test the projects in the real environments,
where the circuits will be deployed.

In many situations, the built-in I/O devices in mobile devices
may also be enough for quickly testing ideas when
inspiration strikes. This way, the proxy is not in its regular
form, allowing further reduction of the need to carry I/O
components. For example, the user can use the built-in
proximity sensor of the tablet as a proxy to simulate a HC-
SR04 ultrasonic distance sensor and quickly test an idea
similar to the Distance Alarm System [4] where a buzzer
rings upon the user’s hand covering the sensor. A remote
collaborator in a stationary environment can take the lead on
typing Arduino code because doing so on a mobile device
can be challenging.

Figure 4. The system workflow.

PROXINO UNDER THE HOOD
One area not described in the example with Alice is
programming. Typically, when a user starts an electronics
project from scratch, they need to write code (in our case
Arduino code) to read or write to I/O components that enable
controlling the behavior of the circuit. With Proxino, the
construction of a real circuit is not required by a user.
Instead, the system uses a circuit simulator. Therefore,
Arduino program’s read or write functions (e.g.,
analogRead() or analogWrite()) now communicate with the
simulator. The process can be described as the following:

• When a user constructs a virtual circuit in Fritzing, the
circuit is also created in the simulator by the system.

• The Arduino shield takes the real-time input from the input
proxy by measuring its analog value (e.g., voltage,
capacitance, and resistance).

• It then sends data to the simulator running in the
background of a laptop computer via the shield’s hosting
Arduino.

• The data is used along with the mathematical model of the
user’s virtual circuit by the simulator to recover the
component’s input voltage. Using Alice’s photoresistor
circuit as an example, our hardware captures the changes
in the resistance of the photoresistor through an input pin
of the shield. It passes the data to the simulator, which then
recovers the input voltage of the photoresistor using the
voltage divider equation.

• If a read function in the user’s program is called, the input
voltage is returned to the program. For example, when the
analogRead() is executed, the system converts the current

Session 1B: Software and Hardware Development

UIST '19, October 20–23, 2019, New Orleans, LA, USA

125

input voltage into an integer value between 0 and 1023 to
overwrite the return value of the analogRead().

Output uses a similar approach, as when a write function is
executed, our system generates PWM signals based on the
user’s specification of duty cycle in analogWrite(), which
was then plugged into the simulator to calculate the right
peak value for the shield to drive the proxy. Figure 4
demonstrates the system workflow.
PROXINO SHIELD
Our custom shield was developed to handle I/O proxies that
are both a singleton or a module. Many singletons do not
function properly on their own, thus measuring the analog
signals from them can be difficult. For example, the
resistance of a photoresistor cannot be measured unless
inside a module, where a resistor is used with the
photoresistor to form a voltage divider. Similarly, a DC
motor does not work without an actual motor driver. The
shield handles these situations using a data acquisition
circuit and a proxy driver circuit. Depending on the type of
input proxy, the data acquisition circuit forms a voltage
divider, RC, or pull-down circuit, allowing the device to
measure input voltage, resistance, capacitance, or switch
status for varying applications for novice makers. The proxy
driver circuit can generate PWM signals in a frequency of
500Hz at a proper duty cycle and peak value to drive
different types of output singleton.

A small number of I/O singletons are self-functional without
the need to be inside a module with supporting components.
Examples include the temperature sensor, proximity sensor,
and servo motor. Therefore, getting input or output to them is
straightforward. The user can even use an Arduino directly.
Modules are similar, but in cases when a module proxy is
incomplete (e.g., missing a resistor), its I/O component is
treated as a singleton so using the shield is necessary. This is
the easiest way to allow us to properly interact with the
corresponding I/O component without significantly
increasing the complexity of the shield.
SOFTWARE IMPLEMENTATION
Our software implementation includes (1) a front-end
breadboard circuit design and programming tool and (2) a
back-end server handling circuit simulation, data
synchronization between the simulator and a user’s Arduino
code, and remote collaboration.
Front-end
Virtual circuit design environment
We implemented our virtual circuit design interface as a part
of Frtizing [7], a circuit prototyping tool common in maker
community. Our tool also provides a user with options to
interact with virtual I/O components through physical proxies
in the form of either an electronic component or the built-in
sensors or actuators of a mobile device. The software also
allows a user to manually adjust the value of an input
component (e.g., resistance of a flex resistor) to see how the
constructed circuit behaves accordingly. This is useful for
testing and debugging the circuit virtually. Remote

collaboration is supported by enabling multiple users from
different locations to construct a circuit at the same time,
using a shared virtual breadboard.
Arduino programming environment
Users can develop an Arduino program in Fritzing’s built-in
Arduino IDE. Despite the use of a virtual circuit and physical
proxies, the user programs the circuit as though it is real.
From the system’s perspective however, it is important to
synchronize the execution of the user’s code, especially for
input functions like analogRead(), as the simulator runs
slower than the code. Again, with the photoresistor example,
nothing beyond analogRead() should be executed until after
the simulator calculates the input voltage of the photoresistor.
Output is similar, as the execution of analogWrite() should be
paused until the output PWM signal for the LED proxy
arrives from the simulator. Our system achieves this by
injecting our custom code into the user’s program. For
example, we replace the calls to analogRead() and
analogWrite() with our custom functions, that pause the
user’s code until data from the simulator arrives (Figure 5).
Our system modifies the user’s code only after the user clicks
the “Run” button, prior to the code being compiled.

Figure 5. Our system modifies the user’s program
automatically by replacing anlaogRead() by a custom function,
called analogRead_proxino(), to pause the user’s code until
data from the simulator arrives.

Note that our system relies on continuous communication
between the simulator running on the hosting computer and
the program running on the Arduino. Some applications may
require interrupts (e.g. such as the communication to a
computer) be disabled temporarily while reading data from
an input component. For example, in programing a capacitive
sensor to count the CPU cycles required to pull up a sensor
pin, it is often necessary to have all interrupts disabled (e.g.,
by calling noInterrupts()) while reading sensor data. This
may cause a system failure in our case, as Proxino relies on
the communication between an Arduino and the simulator to
exchange data for input and output. Our solution to this
problem is to run interrupt-sensitive logic on the Proxino
backend server instead of on the Arduino board and have the
result to be returned to the board. For example, the number of
CPU cycles it takes for a sensor pin to be pulled up can be
estimated by running the counting logic on the hosting
computer, as the processor cycle of the user’s program is
known. From a user’s perspective, they do not make any
changes in their program.

Session 1B: Software and Hardware Development

UIST '19, October 20–23, 2019, New Orleans, LA, USA

126

Backend
Circuit simulator
The circuit simulator was implemented using LiveSpice [9],
an open source circuit simulation tool for analog circuits. We
modified its source code to allow the tool to take real-time
input data from physical proxies and calculate output voltage
values based on a user’s interaction with a proxy. Since
LiveSpice does not provide the mathematical models for the
common I/O components, we selectively implemented
several of them, such as LEDs, hobby motors, vibrating
motors, and buzzers.
Network Server
We developed a custom server to handle communication for
remote collaboration. The server takes all changes that occur
on remote nodes, such as user interactions with remote
proxies or modifications on the shared circuit. It
communicates these changes to the simulator and reports the
results back to remote clients. The server is written in
Node.js and communicates with each client using Socket.IO.
HARDWARE IMPLEMENTATION
Our shield features a total of 16 I/O pins for interacting with
proxies. Half are used for input components and the
remaining half are for output components. The shield uses
pins 8 and 9 to communicate with its hosting Arduino board.
It also provides pin accesses to all other pins on the Arduino
Uno board (Figure 6). This is useful in the cases when the
user wants to use Arduino directly, like Alice’s Wi-Fi
example.

Figure 6. Proxino PCB in the form of an Arduino shield.

We built the shield around a Nuvoton ARM Cortex-M4
microcontroller with a data acquisition circuit and proxy
driver circuit. The data acquisition circuit is composed of an
8-channel digital-to-analog converter (DAC)
(AD5628BRUZ, Analog Device inc.), a digital potentiometer
(AD5270BRMZ-100, Analog Device inc.), an 8-channel
analog-to-digital converters (ADC) (AD7928BRUZ, Analog
Device inc.), and an amplifier (AD8066ARZ, Analog Device
inc.) serving as a voltage buffer for the ADC (Figure 7 left).
The proxy driver circuit is composed of an 8-channel DAC
and eight high-output-drive amplifier (TLV4112, Texas
Instruments inc.), connected to the Arduino’s VIN pin for
extra current supply (Figure 7 right). This circuit can

generate output voltage up to 6V and current up to 500 mA,
needed for different types of motors. The shield is compatible
with an Arduino UNO and communicates with it using the
UART protocol with a baud rate limit of 115200 bps.

Figure 7. The left circuit is a data acquisition circuit, used for
input components. The right circuit is a proxy driver circuit
designed for output components.

SYSTEM EVALUATION
The goal of this experiment was to measure the difference
between the output of our system versus that of a real circuit.
We included four common analog input signals that included
resistance, capacitance, voltage, and switch status. We also
tested the PWM output of our system with and without being
processed by an IC (e.g., a motor driver).
Analog Input Circuits
We describe our tested circuits for the 4 analog input signals:

Resistance: Comprised of the potentiometer and a resistor of
10K Ω connected in series. Examining the Arduino Starter
Kit [5], we found that this setup is representative of circuits
for commonly used input components based on resistance,
such as the photoresistor, the flex resistor, the force sensor, or
the slide potentiometer. We used a digital potentiometer to
produce different levels of input resistance.

Voltage: Comprised of a function generator and a resistor of
100K Ω connected in series. This setup can also be found for
many of the common input components based on voltage,
including the temperature sensor, the proximity infrared
sensor, and a piezo sensor. We used a function generator to
produce input voltages of varying amounts.

Capacitance: Includes a variable capacitor and a resistor of
1M Ω connected in series. This setup represents a circuit
typically used for capacitive sensing. We used a variable
capacitor to produce different levels of capacitance.

Switch: Comprised of a push button and a 1K Ω resistor
connected in series.
Analog Output Circuits
We compared the PWM output of our system with the
original output from an Arduino UNO. We generated the
PWM signals of different duty cycles in a circuit containing a
resistor of 100 Ω connected with an LED in series. Aside
from the LED itself, this type of circuit is commonly seen in
many other entry level projects to drive output components,
like a buzzer, or a vibration motor. Additionally, we included
in our experiment another common type of circuit composed
of an output component and an IC, and we used a PNP
transistor to drive a DC Hobby Motor 130.

Session 1B: Software and Hardware Development

UIST '19, October 20–23, 2019, New Orleans, LA, USA

127

https://Socket.IO

Data Collection 4
Data collection for both input and output was carried out
using the tested circuits on a real breadboard with an Arduino
Uno, and also on a virtual breadboard with Proxino, where
the behaviors of the circuits were simulated.
Input
For input, the ground truth data includes the resistance values
ranging from 100 Ω to 100K Ω with an interval of 1024 Ω,
voltage values ranging from 0 V to 5 V with an interval of
100 mV, and capacitance values ranging from 100 p to 470 p
with an interval of 4 p. The switch status was produced by
clicking the push button 10 times. We also included in the
ground truth, the corresponding return values from Arduino’s
analogRead() based on the physical circuits. Note that
Arduino’s capacitance readings were recorded using
Arduino’s Capacitive Sensing Library [3].

For the testing data, we recorded the actual resistance,
voltage, capacitance, and switch status measured by the
shield. We also recorded the corresponding return values for
analogRead() calculated by the simulator based on the virtual
representation of the tested circuit. We were interested in
knowing how the value of analogRead() generated by
Proxino and Arduino UNO differ comparatively.
Output
For the ground truth data, we generated 500 Hz PWM signals
ranging from 0 to 100% duty cycles at a 4% interval using
Arduino’s analogWrite(). Next, the corresponding PWM at
the output pins of the Arduino UNO was recorded as ground
truth for the tested circuits.

For the testing data, we recorded the PWM signals calculated
by the simulator, before the signals were passed to the shield.
Additionally, we recorded the corresponding PWM signals
captured at the output pins of the shield. We were interested
in knowing how the output PWM signals generated by the
simulator differ from the real ones, and how the output PWM
captured at the shield differ from the real ones. We compared
the PWM signals by their duty cycle and amplitude.
Result

Analog Input
We report, in the left column of Table 1, the measurement
error of Proxino’s shield versus the ground truth.
Additionally, we report the mean difference in the return
value of analogRead() calculated by our system versus that of
a real circuit using the Arduino UNO.

For the resistance, the measurement error of our shield was
5.92%. This is acceptable as it is close to a resistor’s 5%
tolerance range. The value of analogRead() generated by
Proxino and Arduino UNO differed by 17 units. This
difference was mainly caused by the measurement error from
both Arduino UNO and our shield.

The measurement error of our shield in capacitance was
12.9%, which is again acceptable as it is within the 20%
tolerance range of the capacitor. This amount of error could
be negligible for capacitive sensing. The average return value

of Proxino and Arduino’s touch library differed by 1082
units out of a total range of 65535 units. In turn, the return
value of analogRead() generated by Proxino and Arduino
UNO is deferred by 6 and 3 units respectively. These
differences can be negligible for many of the entry level
applications and circuits for novice makers.
Input Type Error

(%)
Avg. diff in Input Value

Resistance 5.9% 17 (0-1204)

Capacitance 12.9% 1082 (0-65535)

Voltage 2.4% 6 (0-1024)

Switch 0% 3 (0-1024)

Table 1. Error rate of Proxino and difference in the return
value of analogRead() calculated by Proxino versus the
Arduino Uno.

Analog Output
Table 2 summarizes the difference between the PWM signals
of an Arduino UNO and those calculated by our simulator or
captured at our shield. In general, the difference between the
real and simulated signals are relatively small. Our shield
was also able to preserve the signals from the simulator with
a small amount of error in both duty cycle and amplitude.
Overall, we expect that this amount of system errors would
not significantly impact user experience in prototyping entry
level circuits.

We measured the data transmission rate and the delay caused
by data transmission and simulation. The data transmission
rate of Proxino was 3 k/s, which in our implementation was
bound to the serial port communication between the shield
and Arduino. The delay caused by data transmission was 5
ms between the shield and our software running on a 2015
iMac. The delay caused by the circuit simulation was
measured at 19 ms and 11 ms for the LED and motor circuit
respectively. We expect the delay to increase with the
increase of circuit complexity and network traffic.

Circuit Diff. in PWM Duty Cycle Diff. in PWM Amplitude

Simulator Shield Simulator Shield

LED 0.9% 1.2% 49 mV 55 mV

Motor 1.3% 1.7% 200 mV 208 mV

Table 2. Difference in the duty cycle and peak value of the
PWM signal per tested circuit.

INFORMAL USER EVALUATION
To solicit initial user feedback of Proxino, we conducted an
informal user study by asking participants to create the
Nightlight circuit in (1) a desktop environment, (2) a mobile
environment, and (3) with a remote collaborator.
Participants
Nine participants (3 female) between the ages of 18 and 26
participated in the study. All were novice makers with
limited experiences in prototyping breadboard circuits.

Session 1B: Software and Hardware Development

UIST '19, October 20–23, 2019, New Orleans, LA, USA

128

Apparatus
The study apparatus included Proxino along with an LED
and photoresistor, serving as proxies. Participants created the
circuit on a Lenovo Yoga X laptop, which was switched to
tablet mode in a mobile condition in a car. The built-in
ambient light sensor of the laptop was used as the proxy of
the photoresistor in the mobile condition. Participants used
Skype to communicate with the collaborator in the remote
collaboration condition.
Task and Procedure
Participants were then asked to construct the Nightlight
circuit using Proxino in three conditions: (1) on a desk in an
office alone, (2) on the desk working with an expert
collaborator from a remote site, and (3) as a passenger in a
car. In all conditions, participants created the circuit using the
software and were encouraged to try the LED and
photoresistor as proxies. In the remote collaboration
condition, participants constructed the circuit together with a
collaborator (with 5-years of circuit prototyping experience)
and were encouraged to try the proxies on both sides. In the
mobile condition, participants were given the laptop in tablet
mode and were encouraged to use the device’s ambient light
sensor as a proxy for the photoresistor (Figure 8). Note that
readings from the tablet’s ambient light sensor given from
the Windows Sensor API is converted into the resistance
value of the photoresistor (proxy) based on its datasheet,
which is then treated as input data from the proxy. Thus, the
behavior of the built-in ambient light sensor is the same as
the photoresistor. The three conditions were counter-
balanced among participants. After the study, participants
reflected on their experience of using Proxino, the three
scenarios, and how their experience differed from using only
software or a physical breadboard.

Figure 8. The three conditions of the informal study. (a) on a
desk in an office (b) on the desk working with an expert
collaborator from a remote site (c) as a passenger in a car

Result
All participants completed the nightlight prototype
successfully in all three conditions. Through the interviews,
we were able better understand their experiences and identify
potential usability issues in our current implementation.

From a software perspective, participants stated that circuit
prototyping using our software allowed them to construct and
test their circuits quicker and less error-prone than using a
physical breadboard. From the hardware perspective,
participants mentioned that the most enjoyable feature of
Proxino was that they were able to use much fewer physical
components and jumper wires to construct the same circuit
while still being able to interact with it physically. This
allowed our participants to be more focused on the design of

circuit functions rather than cumbersome logistics, such as
cutting wires or fixing loose pin connections.

For example, a participant told us that “When I work on a
real breadboard, I usually have to spend much of my time
cutting wires into proper lengths or identifying the right type
of resistors or other components. This is tedious. But Proxino
allowed me to focus more on getting the right design of my
circuit functions. For example, I had more time to try out
resistors of different values. I knew I could use software
before, but it was not a true option because I was unable to
test my circuit real. Proxino gave me the best from both sides
and I think it is really amazing.” (P2).

Our study results also provided useful insights into the
usability issues that are uniquely related to the introduction of
a physical proxy into software circuit prototyping processes.
For example, debugging a virtual circuit could now be more
complicated in a blended physical and virtual environment. A
participant told us that “it was difficult for me to locate a
problem I had because I was unsure about whether the cause
was a defective photoresistor or LED, or something went
wrong in my circuit” (P1 and P5). We believe a better design
in this case is to program the virtual photoresistor or LED to
react upon the function of the circuit, even if a proxy was not
used. However, in a broader sense, debugging tools
combiningn both hardware and software, such as
ToastBoard[13] and CurrentViz[36], should be considered as
a part of Proxino to allow users to better understand how the
virtual and physical components work together in their
prototyped circuit.

In the remote collaboration condition, participants stated they
were excited that “collaborating on a physical circuit now
becomes possible” (P2, P3, P4, P5, and P7) and about“what
the remote component can bring to the table” (P1, P5 and
P7). What is missing in the current implementation but can
be improved in the future is to allow collaborators to
maintain a constant awareness of the status of the remote
proxy. For example, participants stated “I could not always
see my collaborator’s LED or how they interactive with the
photoresistor” (P1). “Sometimes I do not feel that I have
enough control over the remote proxy” (P7). This indicates
an interesting direction for future research as the issues of
remote awareness in a broader sense is an open problem in
CSCW and now the collaborative circuit prototyping and
physical proxy have brought forth new challenges to solve.

In the mobile condition, all of our participants stated they
saw themselves prototyping a circuit in mobile scenarios.
They found it handy to use the tablet’s built-in sensors as a
proxy. For example, a participant said “I like the idea of
using the built-in sensor as a proxy. Now I can simply take
my circuit with me and show it to my colleagues on a
different floor without having to carry the photoresistor and
Proxino device” (P1). Participants commented that “I do
have new ideas from time to time especially during my bus
ride to school, this tool is helpful in the sense that I can test
my idea anywhere I want” (P4, P7). The same group of

Session 1B: Software and Hardware Development

UIST '19, October 20–23, 2019, New Orleans, LA, USA

129

participants told us that they hoped “my device can have
more of such built-in proxies” (P4, P7). It is not surprising
that the existence of the I/O device in a mobile device limits
what the users can do in mobile without bringing the proxies.
A participant (P7) was concerned about the mobile device’s
built-in sensors may not behavior the same way as the
physical component, and that they may have to change their
Arduino code (e.g., threshold value) when switching back to
a real component. A solution to mitigate this problem is to
calibrate the behavior of components in software. In our
previous example with Alice, the output readings of the
ambient light sensor of the tablet and that of the photoresistor
can be calibrated to match each other.
DISCUSSION AND FUTURE WORK
We discuss the limitations of our current implementation and
directions for future research.
Kernel Options. We considered two options when
implementing this feature. The first option was similar to the
approach described in VirtualComponent [27], where the
system employs a pre-defined set of physical components
preinstalled for future use. The benefit of this approach is
clear, as the constructed circuits behave as though they are
real. However, the drawbacks appear to outweigh the
benefits. For example, the system may fail to work if a
required component is unavailable. Additionally, maintaining
a library of extra components increases the size of the device,
making it inconvenient in mobile situations. Finally, when
deploying a completed circuit, it can be challenging for a user
who will have to give up the entire preinstalled package.
These problems can be mitigated to some extent by using a
centralized resource management approach like those used in
remote electronics laboratories [13, 20, 36], but managing
such a system can be pricey.
The second approach (which we utilized) uses software to
simulate circuit behavior. Software simulation is already
widely used in industry and can be very precise in
reproducing circuit behaviors. However, the challenge is
software cannot completely replicate the real world.
Phenomenon such as environmental noises or conditions
cannot be fully reproduced by the software. We see this as a
limitation, but not a significant drawback for a system
designed for novice makers. Note that computational delay
can be an issue for real-time circuit execution. Therefore,
circuits need to be computationally “light” at present, but we
see it as an issue solved with faster computers. In general,
using a simulator has benefits in scalability, portability, and
deployability in comparison to the first approach.
Hardware capability. The current implementation of our
hardware does not support applications that require high-
frequency signals, such as antennas or microphones. This is
due to the bottleneck in the transmission rate between
Arduino and our shield. This limits the applications from
those involving audio I/O. This issue can be less pronounced
on a different hardware platform, such as an Arduino Mega,
or when using a different data transformation method to
directly communicate with PC, such as USB or WiFi.

Our current hardware implementation also does not support
components that require precise measurements of the input
voltage signal (e.g., a strain gauge) because many of these
components require specific circuits, such as a Wheatstone
bridge circuit or differential amplifier circuit, to amplify the
input signal. Further, our system does not support
components that require a current larger than 500 mA (e.g.,
some models of servos, DC motors, solenoids, speakers).
This is due to the cap of the current electric current supply,
which is increasable with a higher output amplifier. Our
future work will address these challenges with new data
acquisition and proxy driver circuit functions. The new
circuit board will also be redesigned carefully to ensure the
compact size of the new device.
Finally, our system does not support the basic components
(e.g., resistors) or ICs to be used as a physical proxy. This
will also be added in our future iteration as we understand
that allowing the supporting components to be used as a
physical proxy enables many new applications, especially for
educational purposes. For example, it may be needed by a
novice user to learn how to create and fine-turn a real
amplifier circuit in a noisy real-world environment.
Ubiquitous circuit prototyping. We believe that mobile and
remote collaboration has a great potential to improve the
experience of circuit prototyping by changing the way how
breadboard circuits are constructed, tested, and shared among
the users. However, a ton of research has to be done to make
it happen in the future. The current user experience of remote
collaboration is still quite limited. Our immediate next step is
to better integrate the video conference system into our
software so that the users will not have to frequently switch
between the breadboard view and camera view. We will also
explore new ways that can give the user a better control over
a remote proxy, thus to improve experience.
CONCLUSION
In this paper, we propose a new circuit prototyping
environment that allows users to extend a virtual circuit to
the physical world using proxies. We explored the usability
of physical proxies and developed a system to support the
concept. Our system included software, which has a frontend
interface and a backend server, and hardware, created in the
form of an Arduino shield. To demonstrate our approach and
its benefits for novice makers, we implemented several
applications such as remote collaboration and ubiquitous
circuit prototyping. Finally, through a system evaluation and
informal user study for initial feedback, we demonstrate the
effectiveness of using physical proxies for virtual circuits.
We share the insights from our system and envision this work
as motivation for future research into blending the physical
and virtual worlds of prototyping.

Session 1B: Software and Hardware Development

UIST '19, October 20–23, 2019, New Orleans, LA, USA

130

REFERENCES
[1] Altium Designer 17 Overview.

http://www.altium.com/altium-designer/. Accessed in
2019.

[2] Arduino. http://arduino.cc. Accessed in 2019.
[3] Arduino Capacitive Sensing Library.

https://playground.arduino.cc/Main/CapacitiveSensor.
Accessed in 2019.

[4] Arduino Distance Alarm.
https://create.arduino.cc/projecthub/darwindelacruz/distan
ce-alarm-system-
0ed9e5?ref=search&ref_id=distance%20sensor&offset=2.
Accessed in 2019.

[5] Arduino Starter Kit. https://store.arduino.cc/usa/arduino-
starter-kit. Accessed in 2019.

[6] Digilent Electronics Explorer.
https://store.digilentinc.com/electronics-explorer-all-in-
one-usb-oscilloscope-multimeter-workstation/. Accessed
in 2019

[7] Fritzing Software. http://fritzing.org/home/. Accessed in
2019

[8] LabView. http://www.ni.com/en-us/shop/labview.html.
Accessed in 2019.

[9] LiveSPICE. http://www.livespice.org. Accessed in 2019
[10] TinkerCad Circuit. https://www.tinkercad.com/circuits.

Accessed in 2019
[11] VirtualBreadboard http://www.virtualbreadboard.com/.
[12] Fraser Anderson, Tovi Grossman and George Fitzmaurice.

2017. Trigger-Action-Circuits: Leveraging Generative
Design to Enable Novices to Design and Build Circuitry.
In Proceedings of the 30th Annual ACM Symposium on
User Interface Software and Technology (UIST'17),
ACM, 331-342 DOI:
http://doi.acm.org/10.1145/3126594.3126637

[13] Johnson A Asumadu, R Tanner, J Fitzmaurice, M Kelly, H
Ogunleye, J Belter and Song Chin Koh. 2003. A Web-
based hands-on real-time electrical and electronics remote
wiring and measurement laboratory (RwmLAB)
instrument. In Proceedings of the 20th IEEE
Instrumentation Technology Conference (Cat. No.
03CH37412), IEEE, 1032-1035. DOI:
https://doi.org/10.1109/IMTC.2003.1207909

[14] EAGLE PCB Design and Schematic Software. 2017
[15] Tracey Booth, Simone Stumpf, Jon Bird and Sara Jones.

2016. Crossed wires: Investigating the problems of end-
user developers in a physical computing task. In
Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems (CHI'16), ACM, 3485-
3497. DOI: https://doi.org/10.1145/2858036.2858533

[16] Kayla DesPortes, Aditya Anupam, Neeti Pathak and Betsy
DiSalvo. 2016. BitBlox: a redesign of the breadboard. In
Proceedings of the 15th International Conference on
Interaction Design and Children (IDC'16), ACM, 255-
261. DOI: https://doi.org/10.1145/2930674.2930708

[17] Daniel Drew, Julie L Newcomb, William McGrath, Filip
Maksimovic, David Mellis and Björn Hartmann. 2016.
The Toastboard: Ubiquitous Instrumentation and

Automated Checking of Breadboarded Circuits. In
Proceedings of the 29th Annual Symposium on User
Interface Software and Technology (UIST'16), ACM, 677-
686. DOI: https://doi.org/10.1145/2984511.2984566

[18] Adam Fourney and Michael Terry. 2012. PICL: portable
in-circuit learner. In Proceedings of the 25th annual ACM
symposium on User interface software and technology
(UIST'12), ACM, 569-578.
DOI: https://doi.org/0.1145/2380116.2380188

[19] Saul Greenberg and Chester Fitchett. 2001. Phidgets: easy
development of physical interfaces through physical
widgets. In Proceedings of the 14th annual ACM
symposium on User interface software and technology
(UIST'01), ACM, 209-218.
DOI: https://doi.org/10.1145/502348.502388.

[20] Ingvar Gustavsson, Thomas Olsson, Henrik Åkesson,
Johan Zackrisson and Lars Håkansson. 2005. A remote
electronics laboratory for physical experiments using
virtual breadboards. In Proceedings of the 2005 ASEE
Annaual Conference, 12-15.

[21] Björn Hartmann, Leith Abdulla, Manas Mittal and Scott R
Klemmer. 2007. Authoring sensor-based interactions by
demonstration with direct manipulation and pattern
recognition. In Proceedings of the SIGCHI conference on
Human factors in computing systems (CHI'07), ACM,
145-154. DOI: https://doi.org/10.1145/1240624.1240646

[22] Björn Hartmann, Scott R Klemmer, Michael Bernstein,
Leith Abdulla, Brandon Burr, Avi Robinson-Mosher and
Jennifer Gee. 2006. Reflective physical prototyping
through integrated design, test, and analysis. In
Proceedings of the 19th annual ACM symposium on User
interface software and technology (UIST'06), ACM, 299-
308. DOI: https://doi.org/10.1145/1166253.1166300

[23] Steve Hodges, Nicolas Villar, Nicholas Chen, Tushar
Chugh, Jie Qi, Diana Nowacka and Yoshihiro Kawahara.
2014. Circuit stickers: peel-and-stick construction of
interactive electronic prototypes. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI'14), ACM, 1743-1746.
DOI: https://doi.org/10.1145/2556288.2557150

[24] Steven Houben, Connie Golsteijn, Sarah Gallacher, Rose
Johnson, Saskia Bakker, Nicolai Marquardt, Licia Capra
and Yvonne Rogers. 2016. Physikit: Data engagement
through physical ambient visualizations in the home. In
Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems (CHI'16), ACM, 1608-
1619. DOI: https://doi.org/10.1145/2858036.2858059

[25] Yoshihiro Kawahara, Steve Hodges, Benjamin S. Cook,
Cheng Zhang and Gregory D. Abowd. 2013. Instant
inkjet circuits: lab-based inkjet printing to support rapid
prototyping of UbiComp devices. In Proceedings of the
2013 ACM international joint conference on Pervasive
and ubiquitous computing (UbiComp'13), ACM, 363-372.
DOI: https://doi.org/10.1145/2493432.2493486

[26] Majeed Kazemitabaar, Jason McPeak, Alexander Jiao,
Liang He, Thomas Outing and Jon E Froehlich. 2017.

Session 1B: Software and Hardware Development

UIST '19, October 20–23, 2019, New Orleans, LA, USA

131

https://doi.org/10.1145/2493432.2493486
https://doi.org/10.1145/2858036.2858059
https://doi.org/10.1145/2556288.2557150
https://doi.org/10.1145/1166253.1166300
https://doi.org/10.1145/1240624.1240646
https://doi.org/10.1145/502348.502388
https://doi.org/0.1145/2380116.2380188
https://doi.org/10.1145/2984511.2984566
https://doi.org/10.1145/2930674.2930708
https://doi.org/10.1145/2858036.2858533
https://doi.org/10.1109/IMTC.2003.1207909
http://doi.acm.org/10.1145/3126594.3126637
http://www.virtualbreadboard.com
https://www.tinkercad.com/circuits
http://www.livespice.org
http://www.ni.com/en-us/shop/labview.html
http://fritzing.org/home
https://store.digilentinc.com/electronics-explorer-all-in
https://store.arduino.cc/usa/arduino
https://create.arduino.cc/projecthub/darwindelacruz/distan
https://playground.arduino.cc/Main/CapacitiveSensor
http://arduino.cc
http://www.altium.com/altium-designer

Makerwear: A tangible approach to interactive wearable
creation for children. In Proceedings of the 2017 CHI
conference on human factors in computing systems
(CHI'17), ACM, 133-145.
DOI: https://doi.org/10.1145/3025453.3025887

[27] Yoonji Kim, Youngkyung Choi, Hyein Lee, Geehyuk Lee
and Andrea Bianchi. 2019. VirtualComponent: A Mixed-
Reality Tool for Designing and Tuning Breadboarded
Circuits. In Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems (CHI'19).
DOI: https://doi.org/10.1145/3290605.3300407

[28] André Knörig, Reto Wettach and Jonathan Cohen. 2009.
Fritzing: a tool for advancing electronic prototyping for
designers. In Proceedings of the 3rd International
Conference on Tangible and Embedded Interaction
(TEI'09), ACM, 351-358.
DOI: https://doi.org/10.1145/1517664.1517735

[29] Jo-Yu Lo, Da-Yuan Huang, Tzu-Sheng Kuo, Chen-Kuo
Sun, Jun Gong, Teddy Seyed, Xing-Dong Yang and Bing-
Yu Chen. 2019. AutoFritz: Autocomplete for Prototyping
Virtual Breadboard Circuits. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems
(CHI'19). DOI: https://doi.org/10.1145/3290605.3300633

[30] Joanne Lo, Cesar Torres, Isabel Yang, Jasper O'Leary,
Danny Kaufman, Wilmot Li, Mira Dontcheva and Eric
Paulos. 2016. Aesthetic Electronics: Designing,
Sketching, and Fabricating Circuits Through Digital
Exploration. In Proceedings of the 29th Annual
Symposium on User Interface Software and Technology
(UIST'16), ACM, 665-676.
DOI: https://doi.org/10.1145/2984511.2984579

[31] Will McGrath, Daniel Drew, Jeremy Warner, Majeed
Kazemitabaar, Mitchell Karchemsky, David Mellis and
Björn Hartmann. 2017. Bifröst: Visualizing and Checking
Behavior of Embedded Systems across Hardware and
Software. in Proceedings of the 30th Annual ACM
Symposium on User Interface Software and Technology
(UIST'17), ACM, 299-310.�DOI:
https://doi.org/10.1145/2901790.2901833

[32] David A Mellis, Leah Buechley, Mitchel Resnick and
Björn Hartmann. 2016. Engaging amateurs in the design,
fabrication, and assembly of electronic devices. In
Proceedings of the 2016 ACM Conference on Designing
Interactive Systems (DIS'16), ACM, 1270-1281.
DOI: https://doi.org/10.1145/2901790.2901833

[33] Raf Ramakers, Fraser Anderson, Tovi Grossman and
George Fitzmaurice. 2016. Retrofab: A design tool for
retrofitting physical interfaces using actuators, sensors and
3d printing. In Proceedings of the 2016 CHI Conference

on Human Factors in Computing Systems (CHI'16), ACM,
409-419. DOI: https://doi.org/10.1145/2858036.2858485

[34] Raf Ramakers, Kashyap Todi and Kris Luyten. 2015.
PaperPulse: an integrated approach for embedding
electronics in paper designs. In Proceedings of the 33rd
Annual ACM Conference on Human Factors in
Computing Systems (CHI'15), ACM, 2457-2466.
DOI: https://doi.org/10.1145/2702123.2702487

[35] Mitchel Resnick, Fred Martin, Randy Sargent and Brian
Silverman. 1996. Programmable bricks: Toys to think
with. IBM Systems journal, 35 (3.4). 443-452.
DOI: http://dx.doi.org/10.1147/sj.353.0443

[36] Nuno Sousa, Gustavo R Alves and Manuel G Gericota.
2010. An integrated reusable remote laboratory to
complement electronics teaching. IEEE Transactions on
learning technologies. 265-271.
DOI: https://doi.org/10.1109/TLT.2009.51

[37] Evan Strasnick, Maneesh Agrawala and Sean Follmer.
2017. Scanalog: Interactive Design and Debugging of
Analog Circuits with Programmable Hardware. In
Proceedings of the 30th Annual ACM Symposium on User
Interface Software and Technology (UIST'17), ACM, 321-
330. DOI: http://doi.acm.org/10.1145/3126594.3126618

[38] Nicolas Villar, James Scott, Steve Hodges, Kerry Hammil
and Colin Miller. 2012. NET gadgeteer: a platform for
custom devices. In International Conference on Pervasive
Computing, Springer, 216-233.
DOI: https://doi.org/10.1007/978-3-642-31205-2_14

[39] Chiuan Wang, Hsuan-Ming Yeh, Bryan Wang, Te-Yen
Wu, Hsin-Ruey Tsai, Rong-Hao Liang, Yi-Ping Hung and
Mike Y Chen. 2016. CircuitStack: supporting rapid
prototyping and evolution of electronic circuits. In
Proceedings of the 29th Annual Symposium on User
Interface Software and Technology (UIST'16), ACM, 687-
695. DOI: http://doi.acm.org/10.1145/2984511.2984527

[40] Te-Yen Wu, Hao-Ping Shen, Yu-Chian Wu, Yu-An Chen,
Pin-Sung Ku, Ming-Wei Hsu, Jun-You Liu, Yu-Chih Lin
and Mike Y Chen. 2017. CurrentViz: Sensing and
Visualizing Electric Current Flows of Breadboarded
Circuits. In Proceedings of the 30th Annual ACM
Symposium on User Interface Software and Technology
(UIST'17), ACM, 343-349.
DOI: http://doi.acm.org/10.1145/3126594.3126646

[41] Te-Yen Wu, Bryan Wang, Jiun-Yu Lee, Hao-Ping Shen,
Yu-Chian Wu, Yu-An Chen, Pin-sung Ku, Ming-Wei
Hsu, Yu-Chih Lin and Mike Y Chen. 2017. CircuitSense:
Automatic Sensing of Physical Circuits and Generation of
Virtual Circuits to Support Software Tools. In
Proceedings of the 30th Annual ACM Symposium on User
Interface Software and Technology (UIST'17), ACM, 311-
319. DOI: http://doi.acm.org/10.1145/3126594.3126634

Session 1B: Software and Hardware Development

UIST '19, October 20–23, 2019, New Orleans, LA, USA

132

http://doi.acm.org/10.1145/3126594.3126634
http://doi.acm.org/10.1145/3126594.3126646
http://doi.acm.org/10.1145/2984511.2984527
https://doi.org/10.1007/978-3-642-31205-2_14
http://doi.acm.org/10.1145/3126594.3126618
https://doi.org/10.1109/TLT.2009.51
http://dx.doi.org/10.1147/sj.353.0443
https://doi.org/10.1145/2702123.2702487
https://doi.org/10.1145/2858036.2858485
https://doi.org/10.1145/2901790.2901833
https://doi.org/10.1145/2901790.2901833
https://doi.org/10.1145/2984511.2984579
https://doi.org/10.1145/3290605.3300633
https://doi.org/10.1145/1517664.1517735
https://doi.org/10.1145/3290605.3300407
https://doi.org/10.1145/3025453.3025887

