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Figure 1. (a - b) Bimanul text entry using the thumb-tip tapping on a miniature keyboard residing invisibly on the first segment of 
an index finger (c) BiTipText keyboard layout. 

ABSTRACT 
We present a bimanual text input method on a miniature 
fingertip keyboard, that invisibly resides on the first 
segment of a user’s index finger on both hands. Text entry 
can be carried out using the thumb-tip to tap the tip of the 
index finger. The design of our keyboard layout followed 
an iterative process, where we first conducted a study to 
understand the natural expectation of the handedness of the 
keys in a QWERTY layout for users. Among a choice of 
67,108,864 design variations, we identified 1295 candidates 
offering a good satisfaction for user expectations. Based on 
these results, we computed an optimized bimanual 
keyboard layout, while considering the joint optimization 
problems of word ambiguity and movement time. Our user 
evaluation revealed that participants achieved an average 
text entry speed of 23.4 WPM. 

Author Keywords 
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CSS CONCEPTS 
• Human-centered Computing~Text Input;  

INTRODUCTION 
As computing becomes ubiquitous, the need to provide 
users with a fast, subtle, and always-available mechanism 
for text entry has grown significantly. Micro thumb-tip 
gestures can deliver on this promise, by allowing a user to 
type by tapping on a miniature keyboard residing invisibly 
on the first segment of an index finger, using the thumb 
(TipText [38]). Thus, the text input can be carried out 
unobtrusively and even without the user looking at the 
keyboard (referred to as “eyes-free” in this paper). This can 
lead to better performance when compared with eyes-on 
input [44] and can also save screen real estate for devices 
with limited screen space. However, the existing technique 
is exclusively unimanual [38], despite typing often being a 
two-handed activity.  

In this paper, we propose a keyboard design for bimanual 
thumb-tip text input. With two index fingers, the size of the 
input space doubles, thus the keys are larger and less 
crowded, which is helpful for reducing tapping errors. 
Additionally, keys residing on different index fingers use 
two separate input spaces, thus they can no longer be 
confused with each other by the system. This largely 
mitigates the ambiguity issue that is inevitable on a 
miniature fingertip keyboard. Further, the handedness of 
the keys on a layout (i.e. which index finger a certain key 
resides on) determines how typing alternates between the 
two hands (e.g., left  left  left  right  left). For 
words with a unique order of handedness, they cannot be 
typed incorrectly as long as the user types the words in the 
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correct order of handedness, even if the keys are not tapped 
precisely. All of these benefits can make typing more 
accurate and faster. 

Despite these benefits, identifying an optimized design for a 
bimanual layout for eyes-free typing is challenging for 
several reasons. First, it is unclear how to optimize the 
keyboard layout for an improved typing speed to get the 
most out of the key handedness unique to the bimanual text 
input. Second, numerous design options exist for a 
bimanual thumb-tip keyboard, but it is unlikely to conduct 
user studies to test every possible layout variation to find an 
optimized design. Third, the performance of the layouts 
may vary significantly even with small changes but there is 
a lack of a mechanism that can effectively measure how 
well a certain design may work in comparison to millions of 
other alternatives.  

To explore the design space of this new text entry technique 
(which we call BiTipText), we took an iterative design 
approach, where we first conducted a study to understand a 
users’ natural expectation of the handedness of the keys in a 
QWERTY layout. Among the choice of 67,108,864 
possibilities, we identified 1295 candidates offering good 
satisfaction on user expectation. The results were used for 
our layout optimization, where we performed a stepwise 
search for optimized layout variations and identified one 
that improves the movement time (target acquisition speed) 
and word ambiguity (Figure 1c). Finally, we optimized this 
design for eyes-free input by utilizing a spatial model 
reflecting a users’ natural spatial awareness of key locations 
on the tip of the index fingers. To evaluate our technique, 
we conducted a study with 10 participants to evaluate the 
speed and accuracy of BiTipText in a controlled 
experiment. Our results revealed that participants could 
achieve an average of 23.4 WPM with 0.03% uncorrected 
errors.  

Our contribution is two-fold: an optimized keyboard layout 
design for bimanual thumb-tip text input and a user study 
demonstrating the effectiveness of BiTipText. 

RELATED WORK 
We summarize the literature in micro-gesture interactions, 
text entry on small devices, and keyboard optimization. 

Micro-Gesture Input  
Gesturing with the thumb-tip against the tip of the index 
finger offers opportunities for natural, subtle, and 
unobtrusive interactions in ubiquitous computing 
applications, such as navigation [5], triggering commands 
[12, 20, 32], or performing text input [38]. This style of 
input has become increasingly prevalent with the advance 
in sensing techniques [5, 12, 20, 31, 32, 34]. For example, 
FingerPad [5] detects 2D touch input on the tip of the index 
finger using a finger-worn device with electromagnetic 
sensing. Huang et al.’s work [17] uses a similar approach 
but enables one-handed and eyes-free input using a thumb-
to-fingers interface. Soli [20, 32] uses an external sensor to 

track very small finger movements using 60 GHz radar 
signals. Pyro [12] detects thumb-tip gestures drawn on the 
tip of the index finger based on the thermal radiation 
emitting from the user’s fingers.  

Recent developments for interactive skin technologies 
enable a new way to sense micro gestural input [18, 21, 25, 
33, 35, 36]. For example, iSkin [35] is a thin, flexible, and 
stretchable skin overlay, made of biocompatible materials 
capable of sensing touch input on the skin. The sensor can 
be made in different shapes and sizes and used in many 
different locations on the body, such as the fingertip. 
DuoSkin [18] is similar in that it can detect touch input on 
the skin using an interactive overlay made of gold leaf. 
SkinMarks [36] are interactive tattoos that can detect touch, 
squeeze, and bend on the skin. Finally, in recent work by 
Nittala et al. [25], high-resolution multi-touch input is now 
feasible on interactive skin overlays.  

Text Entry on Small Devices 
Text entry on small devices is challenging primarily due to 
the lack of input space. A large body of research has been 
carried out in this space to improve user experience [1, 6, 
11, 13-16, 26, 29, 40]. Within the existing work, many have 
employed a two-step operation, requiring a keyboard to be 
expanded before a user can select the desired key [1, 6, 7, 
16, 26, 28, 29]. For example, with Zoomboard [26], a user 
needs to zoom into a region containing the desired key 
before the key can be selected. Splitboard [16] takes a 
different approach by using a keyboard beyond the size of 
the screen of a smartwatch. When the desired key is off-the-
screen, the user must scroll the keyboard to bring the key 
inside the view. Both DualKey [15] and ForceBoard [42] 
associate a keyboard key with two letters. The user must 
use different levels of pressure or different fingers to 
specify the desired letter.  

Note that text input does not need to be carried out on a 
touchscreen. For example, Yu et al.’s work [41] allows 
users to type on a one-dimensional touch sensor using 
unistroke gestures. With WrisText [11], a user can perform 
text input by whirling the wrist. FingerT9 [37] maps the 
keys of a T9 keyboard onto the different segments of the 
fingers for the thumb to tap. ThumbText [19] allows a user 
to perform text input using a ring-sized touchpad worn on 
the index finger. TipText [38] features a miniature 
QWERTY keyboard residing invisibly on the first segment 
of the user’s index finger. The user can type using the 
thumb-tip to tap the tip of the index finger. However, the 
technique was designed exclusively for one-thumb use, a 
limitation we address in this work. 

Keyboard Optimization for One vs. Two-Thumb Use 
While QWERTY is the standard keyboard layout for both 
physical and virtual keyboards, it can also be suboptimal in 
many scenarios, including gestural typing. Smith, et al. 
proposed a set of QWERTY variations to optimize the 
performance of the keyboard for gestural typing based on 
gesture clarity, gesture speed, and similarity to QWERTY 
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[30]. Their approach requires keys to be shifted away from 
their original locations, making users learn a layout before 
they can begin typing. To address this issue, Bi and Zhai [4] 
proposed IJQwerty, a layout that is different from 
QWERTY by one pair of keys but still capable of achieving 
a significant improvement on typing accuracy and speed. 

The keyboard layout can also be optimized for bimanual 
text input. For example, Oulasvirta et al.’s work [27] 
demonstrated that rearranging the location of the keys in a 
split keyboard encouraged more alternate-side taps, thus 
leading to faster typing speed. Bi, et al. developed a method 
for gestural typing to be performed using two thumbs. They 
found bimanual typing was more comfortable and less 
physically demanding [2]. Recent work from Lu et al. 
allows bimanual text entry to be performed on a tablet using 
the user’s peripheral vision [22]. This way, the user’s 
primary attention can be focused on the output text.  

DESIGN CONSIDERATIONS 
We considered several factors for a bimanual thumb-tip 
keyboard.  

Eyes-Free Input 
Similar to TipText, a user types using BiTipText without 
looking at their finger movement or the keyboard (or “eyes-
free”). As the user’s input space is different from the output 
space, their imaginary location of the desired key, based on 
their spatial awareness, can be different from the actual 
location of the key. Certain levels of tapping errors can be 
tolerated using a statistical decoder [13, 43], which 
considers the models of input language and people’s natural 
spatial awareness of the location of the desired key.  

Learnability 
Learning needs to be reduced, especially when the 
keyboard layout is invisible when typing. Our layout is 
based on QWERTY, as it is relatively easy to learn due to 
its widespread adoption. Note that for bimanual input, keys 
need to be distributed across two index fingers, which 
creates millions of possibilities for layout designs. To 
facilitate learning, the spatial relationship of the letters 
needs to remain the same as QWERTY. Thus, keys remain 
in their original locations in relation to their neighbors. This 
ensures that users can rely on their existing knowledge of a 
smartphone keyboard layout without the need to learn new 
letter locations. In the example shown in Figure 2, our 
design requires the center of “E” to remain to the north-east 
of the center of “S” (Figure 2a) rather than shifting to the 
north-west (Figure 2b) even when space is available on the 
right side of “S”. This is to ensure strings like “SE” can be 
typed based on a user’ existing spatial awareness of key 
locations. Although keys near each other can be hard to 
select, we saw it less of an issue as a statistical decoder can 
likely be helpful in this case. We used this spatial 
relationship to infer the key center in the estimation of word 
ambiguity and movement time later in our optimization. 
Finally, in our design, keys are not duplicated on both sides. 

 

Figure 2. (a) Example of a possible bimanual keyboard layout  
(b) an alternative design of left keyboard which divides the 
space evenly for large keys. 

Typing Speed 
In the bimanual condition, typing speed is affected by many 
factors. For example, the task distribution across the 
dominant vs. nondominant hand may affect the speed. 
Some layouts may be more optimal for word ambiguity 
while others may be more optimal for movement time. The 
mixture of different factors makes it difficult to find an 
effective strategy for keyboard optimization. We used a 
program to estimate how fast users can type for all the 
candidate layouts using a quantitative measurement of 
movement time and word ambiguity. 

Handedness Expectation  
People’s natural expectation of the handedness of a layout 
may follow their bimanual typing experience on a soft or 
hardware keyboard. As such, an intuitive solution for our 
work can be a split keyboard with the QWERTY layout 
divided from somewhere in the middle, like those found on 
tablets. However, it is unclear if such a layout is optimal for 
typing performance. While some layouts may not fully 
satisfy user expectation, the tradeoff can be improved 
typing efficiency. Thus, a balance can be drawn. Our 
strategy was to iterate all the possible layout variations and 
find the ones promising relatively good user satisfaction as 
input for our layout optimization.  

BITIPTEXT 
By considering these factors, we designed our thumb-tip 
text entry technique as a bimanual version of TipText [38], 
with new features designed exclusively for bimanual text 
input. The keyboard involves keys distributed across the 
two index fingers with a layout optimized for typing speed, 
without significantly impacting usability. This allows the 
users to type fast and efficiently. When typing with 
BiTipText in an eyes-free context, a user selects the keys 
based on their natural spatial awareness of the location of 
the keys on the two index fingers. The system generates a 
list of candidate words in response to the selected keys, 
ranked based on the probability calculated using a statistical 
decoder. The user swipes the thumb right to enter the 
selection mode, which highlights the top-ranked candidate. 
The user can swipe right again to navigate to the next 
candidate. The word will be committed automatically upon 
the user typing the next word (e.g. tapping the first letter of 
the next word). Space will be inserted automatically after 
the committed word. The user can swipe left to delete the 
last letter. Auto-complete was implemented by following 
the algorithm described in [40].  
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BiTipText Hardware 
We developed an interactive skin overlay, similar to the one 
presented in TipText [38]. Our sensor measures ~2.2cm × 
2.2cm and contains a printed 3×3 capacitive touch sensor 
matrix with diamond-shaped electrodes of 5 mm diameter 
and 6.5mm center-to-center spacing. Our prototype was 
developed using a flexible printed circuit (FPC). The sensor 
is 0.025 – 0.125 mm thick and 21.5mm × 27mm wide. The 
sensor was controlled using an Arduino microcontroller 
with a MPR121 touch sensing chip. The raw capacitive data 
from each channel was transmitted at a frequency of 100Hz. 
Software that interpolates the touch events was 
implemented in C#. 

 

Figure 3. BiTipText prototype, composed of a capacitive 
sensor developed using FPC. 

STUDY 1: HANDEDNESS EXPECTATION 
To begin our research, we sought to understand users’ 
natural expectation of the handedness of the 26 letters, 
which we described as the percentage of times that a letter 
is selected using the left or right hand when typing 
bimanually on index fingers. We used the study result to 
identify a set of candidate layouts that offer a good match 
between the handedness of the layout and user expectation. 

Participants and Apparatus 
Ten participants (3 females) aged from 20 to 25 participated 
in the study. All of them were familiar with the QWERTY 
layout on a smartphone keyboard. Participants wore the 
BiTipText hardware on the first segment of the index finger 
on both hands. A 24-inch monitor was used to show the test 
phrases and user input. Participants sat in a chair with their 
hands placed below their sight.  

 

Figure 4. Setup of Study 1. 

Task and Procedure 
Participants were asked to type 8 blocks of 10 test phrases, 
among which, 64 were randomly picked from MacKenzie’s 
phrase set [24]. The rest were randomly selected pangrams, 
presented as every fifth phrase. Like previous work [9, 10], 
we used the pangrams to ensure that every letter had a 

minimum presence of 30 times each. Participants were 
informed that the keys in the QWERTY layout were 
distributed across the two index fingers in any way they 
liked, and that the system was smart enough to determine 
what letter they wanted to type, upon a touch. There was no 
restriction on which hand to use for a certain letter. The 
same letter was allowed to be typed using different hands 
throughout the study. Participants were asked to type as fast 
and naturally as possible. Our system always displayed the 
correct letters no matter where they touched on the sensor. 
Participants understood that both hands needed to be 
involved in the study, thus none completed the task using 
only one hand. 

Result 
In total, we collected 20490 data points (2049 letters in the 
80 test phrases × 10 participants) to analyze participants’ 
handedness expectation. Figure 5 shows the percentage of 
each letter typed using the left hand (reverse for the right 
hand).  Our result shows that even though participants were 
free to use either hand for any letter, there is a clear 
consistency in their expectation about the handedness of 
each letter. Participants tended to type the keys on the left 
side of the QWERTY layout using their left hand, and vice 
versa. In contrast, there was no clear consistency in the 
handedness of the keys residing in the middle of the 
keyboard (e.g., “G”, “V”, “B”, etc.). As expected, the 
observed behaviors are likely due to the users’ bimanual 
typing experience on existing soft or physical keyboards. 
There were instances where a sided letter was typed using 
the opposite-side finger. For example, 11 out of 300 “Q”s 
were typed using the right index finger, among which, 82% 
were typed after two or more successive taps on the left 
index finger (e.g., “whizzed quickly”). This suggests that 
long successive taps on one side may introduce side errors.  

 

Figure 5. Users’ natural expectation of the handedness of the 
26 letters, described using the percentage of each letter typed 
using the left hand (reverse for the right hand). 

FILTERING OUT LAYOUTS WITH LOW USER 
SATISFACTION ON KEY HANDEDNESS 
Using the data from Study 1, we were able to gauge how 
well a given layout satisfies the user’s expectation. 
Depending on the handedness of each key in that layout, we 
calculated a Satisfaction Score for each word. In particular, 
we simulated the handedness sequence of a word for 10 
times using the percentage data shown in Figure 5. The 
satisfaction score of a word was calculated as the 
probability of a sequence matched exactly the handedness 
distribution of the layout. The satisfaction score of that 
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layout is thus the sum of the scores of all the words in the 
top 3500 words in American National Corpus (80% of word 
usage) weighted by their frequency. The higher the better. 
We iterated and scored all 67,108,864 (226) layout 
variations (each key can be placed either on the left or right 
index finger) using a computer program. The overall score 
for each layout was averaged among participants. The 
layouts were then sorted in a descending order based on 
satisfaction score. We used the score of the top ranked 
layout as a reference and chose the candidates scoring 85% 
and higher for our optimization step. This included 1295 
variations. The top-ranked layout is the one commonly seen 
on touchscreen devices, which separates the keyboard in the 
middle with more keys on the left hand (Figure 6a). This is 
consistent with our finding in Study 1. The ones ranking 
near the bottom of the list followed a similar pattern, except 
that the letters with a low frequency in the corpus (e.g., 
“U”, “P”, “J”, “K”, or “B”) were placed on the opposite-
side hand. This makes sense as the penalty for violating 
user expectation is low on the low-frequency letters.  

 

Figure 6. An illustration of (a) top and (b) bottom-ranked 
layouts in our candidate list. Keys in cyan are on the left hand. 
Keys in yellow are on the right hand. 

GENERAL OPTIMIZATION APPROACH 
With the list of candidates for our optimization, we sought 
to find those that can perform well for typing speed. Here 
we present our optimization approach inspired by Smith et 
al.’s work [30].  

Optimization Metrics 
Designing the layout for a bimanual fingertip keyboard can 
be framed as an objective optimization problem, where the 
objectives are to improve (1) word ambiguity and (2) 
movement time.  

Word Ambiguity. Word ambiguity is a measurement 
describing how much a word is likely to confuse with other 
words in a layout. On a miniature fingertip keyboard, 
tapping errors can hardly be avoided because the keys are 
too small to type. As such, a series of key entries may map 
to a set of neighboring keys and thus different words. 
Therefore, a user needs to spend time on searching and 
navigating a list of candidate words for the target word.  

Movement Time. Movement time is related to the time 
needed to type the desired keys. Different layouts may 

permit different movement time for typing due to the 
handedness and density of the keys.  

Optimization Procedure 
To maximize the objectives based on the metrics, a 
stepwise search can be employed by iterating all the 
possible layout variations based on these metrics and their 
weights. We explain our optimization procedure here. 

Calculating Word Ambiguity Score 
The word ambiguity of a layout can be measured based on 
how likely words are confused with each other by the 
statistical decoder. To gauge ambiguity, we define the 
likelihood of the target word 𝐴  to be misinterpreted as 
another word 𝐵 using a Confusion Score between 0 and 1: 

𝐶𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛ሺ𝐴, 𝐵ሻ ൌ ቐmin ሼ
𝑃ሺ𝐵|𝑆ሻ

𝑃ሺ𝐴|𝑆ሻ
, 1ሽ,   𝑠𝑎𝑚𝑒 𝑂𝐻 

0,                    𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑂𝐻 
 ሺ1ሻ 

where 𝑆 ൌ ሼ𝑠ଵ, 𝑠ଶ, 𝑠ଷ, … , 𝑠௡ሽ denotes a set of touch points 
intended to type the word 𝐴 , 𝑃ሺ𝐴|𝑆ሻ  and 𝑃ሺ𝐵|𝑆ሻ  are the 
probability of 𝐴 and 𝐵 calculated by the statistical decoder 
using 𝑆 (see equation details in TipText [38]). In the case 
when 𝐴 and 𝐵 are typed in the same order of handedness 
(OH), the closer 𝑃ሺ𝐴|𝑆ሻ and 𝑃ሺ𝐵|𝑆ሻ  are, the more likely 
the word 𝐵 will be ranked higher than 𝐴 in the candidate 
list. This will slow down the user. If 𝐴 and 𝐵 have different 
OH, they will not be confused by the system as long as the 
user types them in the correct order of handedness, even if 
the keys are not selected correctly. With Eq. (1), we can 
define the Ambiguity Score of a word 𝑊 from the lexicon 𝐿 
as the highest pair-wise confusion score 𝑊 can get: 

𝐴𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑦ሺ𝑊ሻ ൌ max
௑ ∈ ௅

𝐶𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛ሺ𝑊, 𝑋ሻ ሺ2ሻ 

Note that the challenge to calculate the ambiguity score is 
in the lack of the spatial model needed for Eq. (1). 
Although the model can be acquired through a user study, 
conducting a study for every candidate layout is not feasible 
for an initial investigation.  

We took a simplified approach similar to the one used in 
previous work for word clarity on a soft keyboard [39], 
where 𝑥 and 𝑦 coordinates were assumed to be independent 
to each other, 𝑠௜  and the center of the touch point 
distribution were also assumed to be in the center of the 
target keys, aligned in a grid layout. Furthermore, the 
standard deviation of the touch point distribution for keys in 
different sizes and densities are treated as a constant 𝜎 
based on the result of Study 2 (details later). This 
way, 𝑃ሺ𝑆|𝑊ሻ can be simplified as: 

𝑃ሺ𝑆|𝑊ሻ ൌ ൬
1

2𝜋𝜎ଶ൰
௡

exp ൭െ
1

2𝜎ଶ ෍‖𝑤௜ െ 𝑠௜‖ଶ
ଶ

௡

௜ୀଵ

൱ ሺ3ሻ 

Therefore, Eq. (1) can be described as the following: 

𝐶𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛ሺ𝐴, 𝐵ሻ ൌ ቐmin ቊ
exp൫െ𝑑𝑖𝑠ሺ𝐴, 𝐵ሻ൯ ൈ 𝑃ሺ𝐵ሻ

𝑃ሺ𝐴ሻ
, 1ቋ ,  𝑠𝑎𝑚𝑒 𝐻𝑆 

0,                                                       𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝐻𝑆 
ሺ4ሻ 
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Following Yi et al.’s work [39], 𝑑𝑖𝑠ሺ𝐴, 𝐵ሻ is defined as: 

𝑑𝑖𝑠ሺ𝐴, 𝐵ሻ ൌ
1

𝑆௞௘௬
ଶ ൈ ෍‖𝑎௜ െ 𝑏௜‖ଶ

ଶ

௡

௜ୀଵ

ሺ5ሻ 

where, 𝑎௜ and 𝑏௜ are the 2D coordinates of the key center of 
the 𝑖th character in word 𝐴 and 𝐵 respectively, 𝑆௞௘௬

ଶ  refers 
to the area of the key, and ‖ ∙ ‖ଶ

ଶ  denotes the Euclidean 
norm. Note that 𝑆௞௘௬

ଶ  was used to normalize the result based 
on the size of the first segment of a participant’s index 
finger (measured manually for each participant).  

With all the ambiguity scores available for the top 3500 
words in American National Corpus, the ambiguity score of 
a layout is the sum of the scores weighted by their 
frequency. The lower the score, the better the layout is.  

Calculating Movement Time Score 
Average movement time needed to type on a layout can be 
measured using a user study but conducting studies for 
1295 candidates is not feasible. Instead, we used an 
alternative approach similar to Oulasvirta et al.’s work [27], 
where we estimated the average movement time of a layout 
using a predictive model developed for bimanual thumb-tip 
input. Our model was developed through a user study by 
considering two types of tapping tasks unique in the 
bimanual condition: same-side taps and alternate-side taps.  

Same-side taps are sequential key entries on one side. We 
assumed the movement time for same-side taps followed 
the polynomial model of the same type of task developed 
on a bimanual tablet keyboard [27]. Thus, we model the 
movement time using a polynomial with ID as the 
predictive variable, where ID is ቀ

஽

ௐ
൅ 1ቁ , D is the key 

distance, and W is key width. 

Alternate-side taps are consecutive taps on different sides. 
With alternate-side taps, the thumb that is not typing (i.e. 
idle thumb) is assumed to be approaching its next target 
immediately after the other thumb (active thumb) begins 
typing. This concurrent action is to increase typing speed. 
The movement time for alternate-side taps is affected by 
two variables, ID and the time elapsed (𝑡௘௟௔௣௦௘ௗ) for the 
active thumb to finish typing. For example, the movement 
time can be as short as  𝑡௘௟௔௣௦௘ௗ if 𝑡௘௟௔௣௦௘ௗ is long enough 
for the idle thumb to complete its journey to the target. In 
this situation, what remains is the short time needed for the 
idle thumb to tap the target when its turn comes. The 
movement time can be longer than 𝑡௘௟௔௣௦௘ௗ  if 𝑡௘௟௔௣௦௘ௗ  is 
shorter than the time needed for the idle thumb to reach its 
target. We assumed the movement time for alternate-side 
taps followed the bivariate quadratic model of the same 
type of task developed on a bimanual tablet keyboard [27]. 
Thus, we modeled time using a bivariate quadratic function 
with 𝑡௘௟௔௣௦௘ௗand ID as the predictive variables. 

With the predictive models, we were able to estimate 
average movement time needed to type all the words in the 

top 3500 words in American National Corpus for a given 
layout design. The movement time score for a layout is the 
sum of the movement time of all the words weighted by 
their frequency.  

Metric Normalization  
Scores for word ambiguity and movement time need to be 
normalized in order for them to be appropriately weighted. 
We normalized them in a linear fashion, such that the 
lowest and highest scores are mapped to 0 and 1 
respectively. 

Weight Iteration  
Users may weigh word ambiguity and movement time 
(MT) differently, depending on usage scenarios. This may 
impact the layout of the keyboard. The last step is thus to 
iterate all the possible weight combinations (e.g., using a 
step size of 0.01) and identify an optimized layout for each 
combination by maximizing the following objective 
function: 

Fሺ𝐴𝑚𝑖𝑔𝑢𝑖𝑡𝑦, 𝑀𝑇ሻ ൌ  𝛼 ൈ 𝐴𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑦 ൅  𝛽 ൈ 𝑀𝑇 ሺ6ሻ 

where 𝛼 and 𝛽 are the weight of ambiguity and MT, and 
𝛼 ൅  𝛽 = 1. 

STUDY 2: MODELING TAPPING SPEED  
The goal of this study was to acquire the data needed for 
creating a predictive model to estimate the tapping speed 
for the eyes-free thumb-tip tapping task.  

Participants and Apparatus 
Twelve right-handed participants (4 females) aged from 20 
to 25 participated in the study. We used a Vicon Motion 
Tracking System for finger tracking and the Unity game 
engine for the estimation of touch location (same as in 
TipText [38]). Participants wore markers on the nail of the 
thumbs and index fingers for the Vicon to track finger 
movement (Figure 7). Vicon data was used to control the 
movement of the fingers’ virtual counterparts in Unity. The 
virtual fingers were 3D meshes, obtained by scanning clay 
models of each participant’s fingers. Touch location was 
estimated based on the collision region of the virtual fingers 
and was updated at 200 fps. A monitor was placed in front 
of participants to provide instructions. 

 

Figure 7. Setup of Study 2. 

Task and Procedure 
We used the N-return task from Oulasvirta et al.’s work 
[27]. The task began with a target on an index finger, 
followed by 𝑁  targets on the opposite-side index finger 
before returning to the initial finger for the last target. A 
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rectangular region was shown to the participants to 
represent the input area of each index finger (Figure 8). The 
ratio of the rectangle was adjusted for each participant and 
used for both index fingers (neglecting the small difference 
between them). All square targets were presented to a 
participant before a trial started. Knowing the location and 
order of the targets ahead of time minimized the time they 
spent to search for the next target. Participants were 
encouraged to start approaching the last target as soon as 
the opposite-side thumb started tapping the N targets. They 
selected each target based on their natural spatial awareness 
of the target location on the index finger. They were not 
informed about whether a touch was inside the target. A 
trial was considered successful if participants believed so.  

 

Figure 8. User Interface of Study 2. 

Experimental Design 
Our study included three target widths, ranging from one-
tenth of width of the input area (key size of a full 
QWERTY layout) to half of the height of it (key size of 
TipText [38]). The level in the middle is the average of 
them. We ran two sessions of N-return tasks for each target 
width. One session started from the left hand and another 
one from the right. The sessions were counterbalanced 
among participants. N was chosen to be between 1 to 5 with 
a step of 2, resulting in 3, 5, or 7 targets across the two 
index fingers. For each N, we picked 5 sequences of 
different targets with locations generated randomly without 
the target overlapping with each other. The experimental 
design can be summarized as: 3 Target Width × 2 Starting 
Hand × 15 Targets × 5 Sequences × 10 Repetitions × 12 
Participants = 54000 data points in total.  

Inferring Target Location and Size 
Eyes-free typing is unique in that target location and width 
is determined by the users’ natural spatial awareness of the 
keys, not those of the target shown visually to participants. 
Therefore, the predictive model for the movement time 
should be derived using the distance and width of the 
imaginary targets, determined by the distribution of the 
touch points of the targets. Similar to TipText [38], we 
assumed that participants’ touch locations followed a 
bivariate Gaussian Distribution [3]. Therefore, the center of 
the imaginary target is the center of the distribution of the 
touch points, which was used to calculate the distance 
between the imaginary targets (D). The width and height of 
the imaginary target were calculated using the two standard 
deviations of the touch points along the x- and y-axis. We 
chose shorter sides as W to calculate the ID [23]. 

Movement Time 
The movement time was calculated separately for the same- 
and alternate-side taps [27]. For the same-side taps, the 

movement time from a target to the next one was defined as 
the time from the moment when the thumb left the current 
target to the moment when the thumb touched the next 
target (like how soft keyboards work). For the alternate-side 
taps, we used a trial starting on the left hand as an example. 
We use 𝑡௡ and 𝑡௡ିଵ to denote the last and second last target 
in a trial. The movement time was defined as the moment 
when the right thumb touched target 𝑡௡ିଵ  to the moment 
when the left thumb touched the last target ( 𝑡௡ ). The 
𝑡௘௟௔௣௦௘ௗ  from the first target 𝑡ଵ  to the last one 𝑡௡ was 
defined as the period between the moment when the left 
thumb left 𝑡ଵ  (it becomes idle) to the moment when the 
right thumb touches 𝑡௡ିଵ (the left thumb can tap again).  

Modeling  
For modeling, we used 15 ID conditions and three 𝑡௘௟௔௣௦௘ௗ 
conditions and only adopted those with samples from more 
than two participants. For the same side taps, movement 
time was modeled for the left (𝑅ଶ =0.82) and right hand 
ሺ𝑅ଶ=0.99) respectively. The models are shown below: 

𝑀𝑇௟௘௙௧ ൌ 28.7𝐼𝐷ଶ ൅ 63.9𝐼𝐷 ൅ 110.7 ሺ7ሻ 

𝑀𝑇௥௜௚௛௧ ൌ 66.8𝐼𝐷ଶ ൅ 120.8𝐼𝐷 ൅ 60.8 ሺ8ሻ 

We also obtained the models for the alternate-side taps for 
the operating hand switching from right to left 
(𝑀𝑇௥௜௚௛௧→௟௘௙௧; 𝑅ଶ = 0.77) and left to right (𝑀𝑇௟௘௙௧→௥௜௚௛௧; 𝑅ଶ = 
0.92): 

𝑀𝑇௥௜௚௛௧→௟௘௙௧ ൌ 41.2𝐼𝐷ଶ ൅ 101.2𝐼𝐷 െ 30.98𝑡௘௟௔௣௦௘ௗ
ଶ

൅57.8𝑡௘௟௔௣௦௘ௗ ൅ 47.1𝐼𝐷 ൈ 𝑡௘௟௔௣௦௘ௗ ൅ 182.5 ሺ9ሻ
 

𝑀𝑇௟௘௙௧→௥௜௚௛௧ ൌ 31.8𝐼𝐷ଶ ൅ 45.5𝐼𝐷 ൅ 126.8𝑡௘௟௔௣௦௘ௗ
ଶ

െ187.6𝑡௘௟௔௣௦௘ௗ ൅ 9.6𝐼𝐷 ൈ 𝑡௘௟௔௣௦௘ௗ ൅ 301.5 ሺ10ሻ
 

Discussion 
The predictive models fit the data reasonably well, 
considering that the data for eyes-free target acquisition can 
be noisy. For the same-side taps, the model fits better for 
the right (dominant) hand than the left hand. Similarly, the 
model fits better for 𝑀𝑇௟௘௙௧→௥௜௚௛௧  than 𝑀𝑇௥௜௚௛௧→௟௘௙௧ . This is 
an indication of a lack of control on the left hand or perhaps 
a better fit can be achieved using a different model. A 
surprising finding is that same-side taps were faster than 
alternate-side taps. This is different from the results from 
Oulasvirta et al.’s work conducted on a tablet [27]. We 
believe that it is because the movement time on a small 
fingertip is not long enough for the opposite-side finger to 
take advantage of simultaneous movement. Switching 
hands introduced cognitive overhead which affected task 
performance. As such, layouts that are optimized for 
movement time should avoid alternate-side taps, at least 
between the letters with high frequency. This is reflected in 
our optimization process. Finally, our finding suggested 
that the standard deviation of the touch points distribution 
in the x and y coordinate (i.e., 𝜎௫, 𝜎௬) were not significantly 
affected by the size of the targets (𝜎௫: F2, 22 = 0.622, p = 
0.546；𝜎௬ : F2, 22 = 0.314, p = 0.733). We believe this is 
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because none of the targets are big enough for the user to 
acquire precisely in the eyes-free condition.  

 

Figure 9. Predictive models of same-side taps and alternate-
side taps. 

BITIPTEXT KEYBOARD LAYOUT 
We used the aforementioned approach to optimize our 
keyboard layout, where we calculated the word ambiguity 
score and movement time score for each candidate layout. 
For each of the 101 different weight combinations, we 
iterated all 1295 layout candidates, and identified the one 
with the highest score from Function (6) as the optimal 
layout. Amongst all the 101 optimal layouts, three are 
different, suggesting that only a small set of the layouts 
performed well on our metrics. We plot all the candidate 
layouts in Figure 10, in which the red dot represents the one 
that balanced both metrics (Figure 11c), while the orange 
dots represent the layouts that are optimal for a single 
metric (e.g., scored highest for word ambiguity or 
movement time) (Figure 11a-b).  

 

Figure 10. Candidate layouts shown by movement time score 
and word ambiguity score (orange dots: optimal layouts for 
single metric; red dot: final layout of BiTipText). 

Since each layout represents a compromise between the two 
metrics, the choice of layout depends on the importance of 

each metric for a user. For example, for a fast but less 
accurate user, a layout scored higher on word ambiguity 
may be preferred, while for a slow but more accurate user, a 
layout scored higher on movement time may be preferred. 
We chose the design that balances both metrics. It has a 
word ambiguity score of 0.88 and movement time score of 
0.98. It is similar to the top-ranked layout in handedness 
expectation (Figure 6a) but differs only in the handedness 
of two letters. “U” and “B” are now placed on the left index 
finger. In comparison to that layout, our final design 
exceeds in the word ambiguity score for more than 35%. 

 

Figure 11. (a) The layout optimized for movement time; (b) the 
layout optimized for word ambiguity; (c) The layout of 
BiTipText, which balances both movement time and word 
ambiguity.  

USER STUDY 3: PERFORMANCE EVALUATION 
We conducted a user study to evaluate the performance of 
BiTipText. The evaluation was divided into two sessions. In 
the first session, we developed a statistical decoder based 
on the users’ eyes-free typing data using our final keyboard 
layout. The second session took place the next day, where 
we measured how well users can perform the text entry 
using our technique.  

Participants 
Ten participants (4 females) aged between 22 to 25 
participated in our study. All the participants were right-
handed and were familiar with the QWERTY layout. 

Apparatus  
The apparatus was the same as in Study 1. The sensors were 
calibrated for each participant prior to each step.  

Session 1: Spatial Model 

Task and Procedure 
The task and procedure were similar to those in Study 1. 
Participants were asked to transcribe blocks of 80 different 
test phrases. The pangrams were used to ensure that every 
letter had a minimum presence of 30 times each. The same 
set of 80 phrases was used for all participants. Upon a touch 
occurring on the correct hand, the system recorded the 
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touch location and displayed the correct letters no matter 
where they touched on the index finger. A static image of 
our keyboard layout was shown on the monitor to remind 
participants about the positions of keys. After entering a 
phrase, the experimenter pressed a “Done” button to allow 
the participant to proceed to the next phrase. This process 
was repeated until they completed all phrases. Before the 
study, participants were given 10 minutes to familiarize 
with the system without practicing locations of keys. This 
session lasted around 30 minutes. We collected 19930 
sample points to build the spatial model. 

Result 
Touch points recorded in Session 1 were normalized to 
obtain a general distribution. Figure 12 shows all touch 
points collected from 10 participants. The touch points for 
each key are shown in different letters. As in the unimanual 
condition [38], we assumed that touch points for different 
keys followed the bivariate Gaussian Distribution. Thus, the 
corresponding letters are shown at the centroids of the 
touch points along with a 95% confidence ellipse. Touch 
locations are noisy with considerable overlaps among 
different ellipses, but it is still observable that the centroids 
of each letter follow the spatial relationship of a QWERTY 
layout. While some letters can be hardly separated from 
each other, this noisy input can likely be tolerated by the 
statistical decoder. Using the collected data, we derived a 
general spatial model for our keyboard layout. It was used 
in the second session of the study. 

 

Figure 12. Touchpoints distribution within 95% confidence 
ellipses of all 26 keys across the left and right hands. 

Session 2 

Task and Procedure 
Participants came back in the next day for the second 
session of the study. The task and procedure were similar 
except that: (1) we used a new set of 40 phrases, randomly 
chosen from MacKenzie’s test set, and divided into 4 
blocks; (2) the static image of our keyboard was removed 
from the display; (3) the actual letters entered by the 
participants were shown instead of the correct ones; and (4) 
the top three candidate words provided by the statistical 
decoder were shown for the participants to choose from. 
Participants can use a right swipe gesture to navigate 
through candidate list and left swipe to delete the last 
inputted letter (when typing) or navigate back in the list 
(when selecting word). Prior to the experiment, participants 
could practice with the layout visible for as long as they 
wanted. The second session lasted around 60 minutes. In 

total, we collected 400 phrases (10 participants × 4 blocks × 
10 phrases) in the study. 

Result 
All data obtained in Session 2 was analyzed by using a one-
way repeated measures ANOVA and Bonferroni 
corrections for pair-wise comparisons. We used a 
Greenhouse-Geisser adjustment for degrees of freedom.  

Text-Entry Speed. The average text entry speed was 23.4 
WPM (s.e. = 2.0), indicating the effectiveness of bimanual 
input on a miniature fingertip keyboard. ANOVA yielded a 
significant effect of Block (F1.58, 14.11 = 10.25, p < 0.05, 
ηp

2=0.53). Post-hoc pair-wise comparisons showed a 
significant difference between the first and second block (p 
< 0.0083 = 0.05 / 6; 6 is the number of pairs). Participants 
achieved 20 WPM (s.e. = 2) in the first block and the speed 
increased to 25 WPM (s.e. = 5.5) in the last block (Figure 
13). This is exciting as the result suggested that with 
practices, participants were able to achieve a typing speed 
comparable to some of the existing techniques on larger 
devices, such as a smartwatch (e.g., 24 WPM for 
WatchWriter [13]).  

Error Rate. We report uncorrected error rate (UER) and 
total error rate (TER). Uncorrected errors were the errors 
detected in the final transcribed sentence, while the total 
errors included both corrected and uncorrected error. 
Overall, the average TER was 2.12% (s.e. = 1.02%). The 
average UER was 0.03% (s.e. = 0.05%). Both types of 
errors appeared to be low, suggesting that bimanual text 
input can effectively reduce the occurrence of typing errors.  

 

Figure 13. Left: text entry speed; Right: average UER and 
TER over four blocks. 

Auto-Complete Rate. We calculated auto-complete rates of 
a word using the ratio between the number of characters 
automatically completed by the system and the total number 
of characters in the word. The overall auto-complete rate 
was 5.8% (s.e. = 2.57%) for all the tested words. The 
average text entry speed with no auto-complete is 23.4 ൈ (1 
– 5.8%) = 22.0 WPM. A marginally significant difference 
(F1.93, 17.4 = 3.8, p = 0.04) between the auto-complete rate 
over blocks suggests that the amount of use of auto-
complete did not change significantly with the increased 
familiarity with the keyboard layout.  

Word Ambiguity. We also report the percentage of time the 
target words appearing at the top of the candidate list. We 
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only used the trials completed without using auto-
completion. Amongst all the 1864 words typed in full 
length, 1477 of them were ranked at Top 1 (79.24%) by the 
statistical decoder. This is exciting, which explains why the 
typing speed was fast and again shows the effectiveness of 
our optimization on word ambiguity. 

DISCUSSION, LIMITATIONS AND FUTURE WORK 
In this section, we discuss our observations and thoughts 
collected during the course of our work. We also present 
the limitations and plan for future research. 

Typing Speed. Optimizing the movement time and word 
clarity improves the typing speed of the bimanual text 
input. As found in Study 2, the alternative-side taps had 
made it slower for the users to acquire the targets. Our 
optimizing approach took this into account by favoring the 
layouts that permit less alternative-side taps. Additionally, 
the improvement of word ambiguity had a significant 
impact on typing speed. This is primarily due to the time 
saved for the participants to navigate the candidate list, as 
the system is relatively precise in predicting a users’ target 
word. Unlike TipText [38], BiTipText does not need the 
letters to be grouped into larger keys. This effectively 
mitigates ambiguity issue as letters located on different 
hands can no longer be confused by the statistical decoder. 
These facts are unique to the fingertip keyboard, as they 
may not have as much impact on a larger touchscreen 
device since the overlap of the touch point distributions is 
far less severe on bigger devices. For example, on a tablet, 
“S” can hardly be confused with “H” by a statistical 
decoder due to the long distance between them, but they 
can be easily confused by a system on a fingertip keyboard. 
With BiTipText, there are two spatial models, one on each 
index finger, with no overlap with each other. This has 
significantly improved the input clarity and thus typing 
speed. As for future work, we will compare the 
performance of BiTipText with TipText through a 
controlled experiment to verify the speed improvement 
introduced by these advantages.  

Predictive Model of Movement Time in the Eyes-free 
Condition. Our predictive model was developed with an 
assumption that the index of difficulty follows the same 
expression as in the Fitts’ Law [8]. However, our results 
showed that aside from the one for the right hand, the 
models do not show a strong fit into the users’ behavioral 
data. This indicates that parameters can be different for the 
ID for the thumb-tip tapping in the eyes-free condition. We 
foresee that a better fit can be achieved with a different 
model or a more precise description of the index of 
difficulty. Additionally, the ordered target acquisition task 
may not perfectly represent typing in English, which also 
leaves spaces for improvements in prediction accuracy. 
These open fruitful directions for future research.  

Statistical Decoding. Our current statistical decoder 
provided three candidate suggestions based on a user’s 
touch input. Since 79.24% of a target word appeared as the 

Top 1 in the candidate list, we expect that showing fewer 
candidates may also work in our technique. This allows 
screen real estate to be further saved. We plan to investigate 
the optimal number of suggestions that should be shown on 
the display. Additionally, a more powerful statistical 
decoder can be developed by considering auto-correction 
for error types that are not considered in the current 
implementation, such as insertion or omission errors. 
Further, efforts will be made to develop an adaptive spatial 
model that can achieve better performance for individual 
user. Note that a statistical decoder cannot handle words 
outside the dictionary. Therefore, users need to be allowed 
to add new words to the dictionary. In such a situation, a 
keyboard can be shown to the user for improved precision 
on tapping.  

Bimanual Input. While our new technique is able to achieve 
a relatively fast typing speed on a miniature fingertip 
keyboard, using both hands may not be preferable in some 
situations, where the user’s hand is busy at other tasks (e.g., 
holding objects). Additionally, typing on a split keyboard 
may lead to an increase in cognitive load due to the 
additional requirements for the users to type each letter on 
the correct hand. Future research will investigate the 
cognitive overhead and identify ways to mitigate it.  

User Study. Our study was conducted in a controlled lab 
environment with the tasks performed by relatively a small 
number of participants in a sitting position. We plan for 
future work to investigate the performance and usability of 
BiTipText with more participants in more realistic 
scenarios, such as standing or walking with the hands 
hanging alongside the body. Other scenarios, such as typing 
while the hands are holding an object are also interesting 
and warrants a careful investigation.  

CONCLUSION 
We proposed a thumb-tip text input method designed and 
optimized for bimanual input. With our technique, the text 
input can be performed using both hands by tapping the 
thumbs on a split fingertip keyboard, residing invisibly on 
the first segment of a user’s two index fingers. Using an 
iterative and user-centered design process, we sought an 
understanding of users’ natural expectation of the 
handedness of the keys in a QWERTY layout.  
Using this knowledge, we identified 1295 layouts that can 
offer good satisfaction for user expectation from a total 
number of 67,108,864 candidates. Based on the results of 
these studies, we computed an optimized bimanual 
keyboard layout that improves both movement time and 
word ambiguity. We evaluated our text entry method in a 
controlled lab study, where we found that our method 
allowed participant to perform text input at an average 
speed of 23.4 WPM. With the findings of this work, we see 
a great potential of the proposed text input method in 
mobile, wearable, and VR/AR applications.  
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