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Figure 1: BIT is a smart textile interface that operates without the need for embedding batteries, ICs and connectors into textiles. 
It features with a receiver coil, enabling wireless coupling and sensor data acquisition with a reader. BIT can be designed to 
accommodate sensors based on capacitance, resistance, or inductance and support concurrent operations of up to three sensors. 
(a) For example, a smart shirt was created with BIT, incorporating a resistive button array, a capacitive pressure sensor and an 
inductive object detector. (b) When interactions occur with the embedded sensors, the impedance spectrum of the smart textile 
interface changes. This change is wirelessly measured by the reader and can be further interpreted as sensor signals. 
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Abstract 
The development of smart textile interfaces is hindered by the inclu-
sion of rigid hardware components and batteries within the fabric, 
which pose challenges in terms of manufacturability, usability, and 
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environmental concerns related to electronic waste. To mitigate 
these issues, we propose a smart textile interface and its wireless 
sensing system to eliminate the need for ICs, batteries, and connec-
tors embedded into textiles. Our technique is established on the 
integration of multi-resonant circuits in smart textile interfaces, 
and utilizing near-field electromagnetic coupling between two coils 
to facilitate wireless power transfer and data acquisition from smart 
textile interface. A key aspect of our system is the development of 
a mathematical model that accurately represents the equivalent cir-
cuit of the sensing system. Using this model, we developed a novel 
algorithm to accurately estimate sensor signals based on changes in 
system impedance. Through simulation-based experiments and a 
user study, we demonstrate that our technique effectively supports 
multiple textile sensors of various types. 

CCS Concepts 
• Human-centered computing → Interaction devices. 
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1 Introduction 
The development of smart textile technology has enabled integra-
tion of daily user input into wearable items such as garments, gloves, 
and bags, offering an alternative to traditional devices like touch-
screens. However, implementing smart textiles faces challenges in 
manufacturability [15, 47, 79], usability [20, 62, 70], and environ-
mental sustainability [52, 65, 66], primarily due to the embedment 
of rigid electronic components such as batteries and circuits into 
textile interfaces. These components compromise comfort, flexibil-
ity as well as usability, and contribute to electronic waste when 
textile products become obsolete. 

To address these issues, various methods have been proposed 
[24, 25, 30, 33, 44, 69, 75, 76], among which resonant sensors hold 
significant promise [19, 23, 28, 42, 57, 60]. This approach utilizes 
minimal passive components, typically an LC (inductor-capacitor) 
resonant circuit consisting of a receiver coil and a capacitive sen-
sor. When the capacitive sensor is pressed, the resonant frequency 
changes, and this change can be detected through near-field mag-
netic coupling with a reader. The reader, similar in form factor 
to a smartphone, can be placed in a pocket, enabling seamless in-
teractions and minimizing the need for embedded electronics in 
textiles. 

However, several challenges remain. First, the approach cur-
rently focuses solely on capacitive sensing, limiting its applicability 
to other wearable sensors that rely on inductance and resistance. 
Additionally, the design does not account for transmission line 
deformation or body contact, which can introduce fluctuations in 
capacitance and inductance, affecting sensor readings. Furthermore, 
misalignments between the reader and interface coils, common in 

wearable contexts, may reduce accuracy. Lastly, the approach sup-
ports only single-sensor operation per reader, limiting its usability, 
as most users carry only one personal device, such as a smartphone. 

In this paper, we proposed an alternative method. Our approach 
extends the resonator-based technique by involving N-parallel se-
ries RLC (resistor-inductor-capacitor) circuits on the the receiver 
coil (Figure 1a). Unlike existing approaches, our method supports up 
to three different types of sensors commonly used in smart garment 
applications, including resistive, capacitive, and inductive sensors. 
Additionally, our approach takes into account the influence of the 
transmission lines and coil misalignment, ensuring more accurate 
and robust sensor readings. Furthermore, our technique allows for 
the concurrent operation of up to three sensors of the same or 
different types. When a user interacts with the interface, such as 
pressing a capacitive sensor, the interaction causes a change in 
the system’s impedance (Figure 1b), which can then be wirelessly 
measured and detected by an external reader. 

To demonstrate the effectiveness of the proposed approach, we 
developed a proof-of-concept prototype that consists of a smart 
textile interface, which is primarily composed of sensors and a 
receiver coil sewed on a textile substrate, and a reader compris-
ing a transmitter coil and a vector network analyzer (NanoVNA) 
for measuring impedance spectrum of the smart textile interface. 
The specific design of smart textile interfaces can be customized 
to support a range of resistive, capacitive, or inductive sensor, de-
pending on the specification of sensors and the number of sensors 
implemented in the interface. When the transmitter coil is aligned 
with the receiver coil on the interface, the reader wirelessly mea-
sures the impedance spectrum of the interface. Our system, then, 
uses an algorithm to analyze the measured impedance spectrum 
for sensor signal estimation. This algorithm was developed based 
on a mathematical model derived from the equivalent circuit of 
the system, accounting for real-world factors such as transmission 
line effects and coil misalignment, both of which can affect the 
measured impedance. To enhance the accuracy and efficiency of 
sensor value estimation, this algorithm incorporates one additional 
known LC circuit within the interface. Through our simulation-
based experiments, we found that our system can reliably capture 
the sensor signals with an average accuracy over 90%. Additionally, 
we conducted a user study to validate the system’s performance in 
real world conditions. The results demonstrated that the system 
robustly captured sensor signals generated by user interactions 
with an augmented shirt, and achieved an overall accuracy of 93% 
in classifying user interactions. 

The key contributions of this work include: 

• An approach that uses the structure of N-parallel series RLC 
circuits to address the limitation of resonance-based sensors 
in battery-free, IC-less and wireless smart textile interfaces; 

• A mathematical model and algorithm that enable our sensing 
system to accurately estimate sensor values from measured 
impedance spectrum; 

• Experimental results demonstrating the effectiveness of the 
proposed approach. 

https://doi.org/10.1145/3706598.3713100
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2 Related Work 
This section provides a brief overview of the existing literature 
on textile-based input interfaces, textile resonators, and e-textile 
fabrication and manufacturing. 

2.1 Textile-based Input Interfaces 
Textile-based input interfaces provide a versatile platform for inter-
acting with electronic devices [53, 56, 67, 71]. These interfaces can 
be categorized into explicit and implicit inputs. Explicit input inter-
faces involve direct interactions, such as touch gestures like tapping 
and swiping [13, 32, 40, 53, 54, 56], as well as deformation ges-
tures like stretching [67], bending [26, 54], and squeezing [50, 51], 
and non-contact gestures like waving [71]. In contrast, implicit 
input does not require specific actions; instead, it gathers informa-
tion through monitoring user activities and contexts. Textile-based 
implicit input interfaces have found practical applications in ar-
eas such as activity tracking [21, 26, 43, 45], health monitoring 
[11, 19, 43, 46, 74], and contextual interactions [27, 72, 73]. One 
example is pressure-sensitive textile cushions that detect seated 
posture for ergonomic adjustments [74]. Recent research by Wu et 
al. [72, 73] has shown that smart textiles can recognize objects in 
contact, enabling fine-grained activity recognition and contextual 
interactions. Additionally, smart textiles are widely used for track-
ing body movements in physical activities [21, 26, 43, 45], providing 
valuable data for health monitoring [11, 46]. 

Despite many applications, most of the existing work necessi-
tates the incorporation of rigid hardware components and batteries 
into textile interfaces. Our research explores an alternative ap-
proach that eliminates integrated circuits, batteries, and connectors 
by using a magnetic resonant coupling technique. This approach 
relies on an external reader, like a smartphone in the user’s pocket, 
to wirelessly drive and read the smart textile interface, reducing 
embedded electronics and enabling more flexible and sustainable 
smart textile interfaces. 

2.2 Textile Resonators 
Resonators are circuits that exhibit electrical resonance at specific 
frequencies. Over time, they have taken on various forms and have 
found applications in domains such as wireless communication [24, 
25, 76], power transfer [61, 68], and sensing [19, 23, 28, 42, 57, 60]. 
Our research is related to two types of resonators: relay resonators 
and resonant sensors. 

Relay resonators use resonant coupling to wirelessly transfer 
power or communication signals, with applications in wireless 
charging [59, 68, 78], sensor networks [43, 44], and on-body com-
munication [24, 25, 76]. These systems typically include an induc-
tive coil and capacitor, often made with textile materials [24], and 
use a magnetic field to induce current, which can power devices or 
facilitate communication. In on-body networks, the relay resonator 
can support signal coverage up to 1 meter by adjusting the capacitor 
for body capacitive coupling [76]. This extended coverage allows 
for greater flexibility in wearable applications. 

Another relevant technology in the field is the resonant sen-
sor, specifically the inductively coupled resonance sensor. These 
sensors can be constructed using textile materials, as they rely on 
simple and passive components such as capacitors and inductors 

[19, 23, 28, 42, 57, 60, 64]. Resonant sensors utilize the principles of 
resonance to detect and measure physical quantities such as tem-
perature [35], pressure [64], or fluid conductivity [19]. However, 
these sensors are currently limited in type, typically functioning 
based on capacitance. In addition, they did not account for the 
influence of transmission lines and coil misalignment, which can 
significantly affect the sensor readings. Furthermore, none of the 
existing systems can support multiple sensors to simultaneously 
operate. This makes each sensor individually connected to a coil for 
wireless power transfer and data acquisition, limiting the usability 
of the approach. 

To address these issues, we designed and developed a battery-
free and IC-less smart textile interface that can support a variety 
of types of sensors while functioning under the influence of trans-
mission lines, and slight coil misalignment. It can also support 
the concurrent operation of up to three sensors, broadening the 
applicability of this interface. We analyzed the circuit model and 
developed a mathematical model and algorithm to enable the reader 
to accurately interpret sensor data from multiple sensors of various 
types, allowing the system to effectively capture a wide range of 
user interactions through textile surfaces or garments. 

2.3 E-Textile Fabrication and Manufacturing 
The fabrication of electronic textiles (e-textiles) is challenging due 
to the complexity of embedding electronics into fabrics. To address 
this, various toolkits have been developed. Notably, Lilypad [17, 18] 
enables hobbyists to incorporate electronics into garments, while 
MakerWear [37, 38] offers a modular approach for beginners. These 
toolkits have inspired the use of modular electronics and block-
based programming in an avant-garde runway environment [62]. 
Other research initiatives, such as Teeboard [48], I*CATch [49], 
and E-broidery [55], instead explore integrating e-textiles through 
embroidery machines [13, 14, 16, 31]. Additionally, Klamka et al. 
developed an iron-on toolkit for easy bonding of e-textiles to fabric 
[39]. 

In addition to these tools for small-scale fabrication, researchers 
have also explored the large-scale manufacturing of e-textiles. For 
instance, Molla et al. [47] studied creating e-textile circuits on a 
larger scale using reflow soldering and conductive threads, demon-
strating that small 2-pin SMD components like LEDs can withstand 
typical washing and wear. Zhu and Kao [79] identified four key chal-
lenges in large-scale e-textile manufacturing: the lack of production 
standards, disconnects between apparel and hardware manufac-
turing, cost disparities, and limited production-capable solutions. 
Addressing these challenges is essential for scaling up e-textile 
production and meeting industry demands. 

Building on prior research, our work aims to eliminate the need 
for e-textile interfaces to be integrated with rigid hardware com-
ponents such as batteries, and connectors. This approach has the 
potential to significantly simplify the fabrication and manufactur-
ing process of e-textiles as well as make e-textiles more sustainable 
and eco-friendlier, lowering the environmental impacts brought by 
the realization of ubiquitous computing. 
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3 BATTERY-FREE, IC-LESS AND WIRELESS 
SMART TEXTILE INTERFACE 

Our goal is to develop a smart textile interface that operates without 
the inclusion of batteries and ICs within textiles, while retaining the 
ability to support various types of textile sensors. To achieve this 
goal, our proposed approach is based on resonant sensors, which 
utilize the characteristics of resonant circuits to wirelessly reflect 
the sensor signals to an external reader, eliminating the need for 
embedding batteries and ICs into textiles. This section discusses 
the operating principle, and provides further understanding in the 
electrical behavior of this interface. 

3.1 Operating Principle 
A traditional resonant sensor comprises an LC resonant circuit, 
the resonant frequency of which can be wirelessly monitored us-
ing a reader through magnetic coupling. Its equivalent circuit is 
described in Figure 2a. To support more common sensor types, 
including capacitive, resistive, and inductive, we replaced the ca-
pacitor (C) in the typical LC circuit by a series RLC resonant circuit, 
as shown in Figure 2b. This resonant circuit, referred as a sensor 
circuit later, consists of a resistor, inductor, and capacitor, designed 
to operate within a specific frequency range. Different sensors can 
be supported by replacing the corresponding components. For ex-
ample, replacing the inductor with a coil forms an inductive sensor 
for detecting metallic objects. To enable concurrent operation of 
multiple sensors, we connected multiple sensor circuits in parallel, 
each designed to operate at distinct frequency ranges. This allows 
our smart textile interface to detect inputs from multiple sensors 
with minimal passive components. 

During operation, the oscillating magnetic field produced by the 
reader’s transmitter coil induces a current within the smart textile 
interface through near-field magnetic coupling with the receiver 
coil. User interaction with the sensor induces a change in the value 
of the corresponding component within the RLC resonant circuit 
(e.g., inductance variations due to metallic objects), causing a shift 
in the impedance spectrum of the smart textile interface. Conse-
quently, this affects the current circulating within the transmitter 
coil, ultimately resulting in changes in the impedance spectrum 
within the reader circuit. Our system measured these changes and 
used an algorithm to extract sensor values for the detection of user 
input. 

Although this approach seems feasible, numerous factors actu-
ally influence the impedance spectrum of the smart textile interface, 
complicating wireless sensor readings. These factors include the de-
sign of the sensor circuits, the parasitic capacitance and inductance 
of transmission lines, and the misalignment between the transmit-
ter and receiver coils. To address these challenges, we first gained 
a deep understanding of the circuits model within the smart textile 
interface and developed corresponding solutions to them. 

3.2 Equivalent Circuit Model 
The equivalent circuit model is a simplified representation of the 
system’s electrical behavior. Different versions exist, balancing 
accuracy and simplicity based on the level of detail needed. For 
example, in some models [24, 25], transmission line behavior could 
be simplified to just parasitic capacitance and resistance, neglecting 

the effects of parasitic inductance. For our system, our goal was 
to develop an equivalent circuit model that is accurate enough to 
capture key behaviors and simple enough for the analysis of our 
system. Based on our pilot study, we designed our model as shown 
in Figure 2b, mainly following prior research on relay resonators 
[24]. Using this model, we have formulated the following equa-
tions to describe the impedance of the entire system, based on the 
literature on wireless power transfer systems [61]: 

𝑍 ( 𝑓 ) = 
1 

1 

(2𝜋 𝑓 𝐿𝑡 ) 𝑗 − 
𝑍 𝑀 ( 𝑓 ) 2 

𝑍𝑠 ( 𝑓 ) 

+ 2𝜋 𝑓 𝐶𝑆𝑀𝐴 𝑗 
(1) 

𝑍 𝑀 ( 𝑓 ) = (2𝜋 𝑓 )𝑘 
√︁ 
(𝐿𝑡 𝐿𝑟 ) 𝑗 (2) 

𝑍𝑆 ( 𝑓 ) = 
1  𝑛 

1 
1 

𝑍𝑖 ( 𝑓 ) 
+ (2𝜋 𝑓 𝐿𝑟 ) 𝑗 (3) 

𝑍𝑖 ( 𝑓 ) = 
1 

1 
(2𝜋 𝑓 𝑙𝑖 − 1 

2𝜋 𝑓 𝑐𝑖 
) 𝑗 +𝑟𝑖 

+ 2𝜋 𝑓 𝐶𝑙 𝑖𝑛𝑒𝑖 𝑗 
+ 2𝜋 𝑓 𝐿𝑙 𝑖 𝑛𝑒𝑖 𝑗 + 𝑅𝑙 𝑖𝑛𝑒𝑖 (4) 

where 𝑍 represents the total measured impedance, 𝑓 is the oper-
ating frequency, 𝑍𝑀 is the impedance of mutual inductance, 𝑘 is the 
coupling factor between the transmitting and receiving coils, 𝑍𝑆 is 
the impedance of the smart textile interface, 𝑍𝑖 is the impedance of 
the 𝑖 𝑡 ℎ sensor circuit connected through a transmission line, 𝑛 is 
the number of resonant circuits embedded in the interface, and 𝑗 is 
the imaginary unit. 

3.2.1 Circuit Model Validation. To validate the effectiveness of the 
circuit model, we implemented a hardware prototype and com-
pared the impedance spectrum generated by the model with the 
actual spectrum from the prototype. The prototype, consisting of 
a reader made from NanoVNA and a smart textile interface with 
three sensor circuits (Figure 3), was affixed to the back of a collared 
shirt worn by a 23-year-old male volunteer. During data collec-
tion, the reader measured the S11 reflection coefficient from 1 MHz 
to 40 MHz to retrieve the ground-truth impedance spectrum. S11 
quantifies the portion of a wave reflected by impedance disconti-
nuities and is easier to measure accurately with our reader than 
the impedance spectrum itself. Similar to impedance, S11 also has 
real and imaginary components, which can be measured separately 
using NanoVNA. On the other hand, with the parameters described 
in Figure 3, we calculated an estimation of the impedance spectrum 
using our model (Eq. 1-4). Then, we derived the S11 values using 
the following formula: 

𝑆 11 = 
𝑍 − 50 
𝑍 + 50 

(5) 

where 50Ω is the standardized internal impedance of NanoVNA. 
Finally, we compared our estimated S11 values with the mea-

sured ground-truth S11 values. Figure 4 illustrates the comparison. 
Overall, our estimation aligns relatively well with the ground truth 
values (𝑅 2 = 0.96), despite small discrepancies in the frequency 
range higher 30M Hz. We suspect that this may be attributed to the 
capacitive coupling between two coils. To mitigate this effect, we 
restricted the operating frequency of the system within the range 
of 1M Hz and 30M Hz. 
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Figure 2: (a) The equivalent circuit of a traditional resonant sensor system. (b) The equivalent circuit of our entire system, 
which consists of a reader circuit and a smart textile interface circuit. The interface includes a receiver coil (𝐿𝑟 ) connected 
in parallel with multiple transmission and sensor circuits. Each transmission line circuit contains parasitic resistance (𝑅𝑙 𝑖 𝑛𝑒 ), 
inductance (𝐿𝑙 𝑖𝑛𝑒 ), and capacitance (𝐶𝑙 𝑖 𝑛𝑒 ), connected to a sensor circuit with a resistor (r), capacitor (c), and inductor (l) in 
series. The reader circuit includes a voltage exciter, internal load (R), and transmitter coil (𝐿𝑡 ), with parasitic capacitance (𝐶𝑆 𝑀 𝐴 ). 
Impedance is measured by capturing voltage at point (n) and applying the voltage divider rule. 

Figure 3: The prototype used in our experiment to validate the accuracy of our equivalent circuit model. The reader was 
constructed using a NanoVNA [7] connecting to a standard NFC transmitter coil (39mm by 42mm with 4 turns) [4] through a 
SubMiniature version A (SMA) connector [10]. For the smart textile interface, each sensor circuits consisted of a resistor, an 
inductor and a capacitor, connecting to an embroidered receiver coil (39mm by 39mm with 5 turns) in parallel via transmission 
line with lengths of 100mm, 200mm, 300mm and same gap of 10mm. Detailed physical parameters and electrical attributes of 
components are illustrated in the figure. The coupling factor of the two coils was measured to be around 0.53 using a 2-port 
VNA to measure mutual inductance [36]. The fabrication process is the same as described in Section 6.1. 

3.2.2 Discussion. From the validated circuit model, we derived 
several key insights. First, each resonant circuit should incorporate 
only one type of sensor—resistive, capacitive, or inductive—while 
keeping other components fixed, as recommended by Eq. 4. This 
reduces unknown variables, increasing model accuracy and solving 
speed when the operating frequency is within the circuit’s resonant 
range. Second, the coupling factor (𝑘 ), as shown in Eq. 1 and Eq. 2, 
is crucial in determining how user-induced impedance changes are 
observed in the reader’s impedance spectrum. A higher 𝑘 leads to 
more pronounced impedance changes, but consistency in 𝑘 is neces-
sary to avoid inconsistencies in measured impedance spectrum. 𝑘 is 
influenced by coil design and alignment, with misalignment being 

inevitable in real-world conditions. Thus, transmitter and receiver 
coils should be designed for a high coupling factor and tolerance to 
misalignment, even when placed in a small pocket. Additionally, 
high coil inductance increases total impedance at high frequencies, 
reducing sensor-induced impedance changes, so a trade-off must 
be made during coil design. Finally, Eq. 4 suggests that transmis-
sion lines should be designed to minimize variation in capacitance 
(𝐶𝑙 𝑖𝑛𝑒 ) and inductance (𝐿𝑙 𝑖𝑛𝑒 ) and to keep 𝐶𝑙 𝑖 𝑛𝑒 low. High varia-
tion complicates impedance spectrum changes, reducing reading 
accuracy, while high 𝐶𝑙 𝑖𝑛𝑒 can short-circuit high frequencies, di-
minishing sensor circuit changes. Based on these insights, our next 
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Figure 4: The ground truth S11 values (blue and orange) and 
the predicted results using our model (green and red). 

step was to optimize coil design and transmission line design to 
enhance sensing performance. 

3.3 Coil Design 
To ensure consistent performance of sensor value estimation in the 
system, we tested various transmitter and receiver coil designs to 
maintain a high and consistent coupling factor (𝑘 ) in both aligned 
and misaligned conditions. We selected a rectangular coil design to 
maximize coverage areas. We explored 9 combinations of 3 trans-
mitter and 3 receiver coil types, with transmitter coils fabricated 
on Flexible Printed Circuit Boards (similar to phone NFC coils), and 
receiver coils fabricated on textile substrates via method same as 
section 6.1. We tested the coupling factor (𝑘 ) by aligning each coil 
pair at three positions: perfect alignment (0mm), slight misalign-
ment (5mm), and moderate misalignment (10mm). Using a two-port 
VNA connecting to transmitter and receiver coil, we measured mu-
tual inductance to determine the coupling factor [36]. The results 
and coil design parameters are presented in Table 1. 

Our results indicated that larger transmitter coils produced higher 
𝑘 values when aligned but performed poorly under misalignment. 
We eliminated coil designs with 𝑘 values below 0.2 under misalign-
ment. Among the remaining coil designs, we selected the transmit-
ter coil with the width of 10mm , and the receiver coil with the 
width of 40mm for our subsequent studies and implementation. 
This choice was made because they maintained consistent 𝑘 higher 
than 0.25 across different conditions. Additionally, their inductance 
were low, resulting in smaller reactance in the high frequency range, 
maximizing the prominence of impedance changes caused by the 
sensor circuits. Furthermore, the smaller transmitter coil is better 
suited for integration into compact devices, such as smartwatches. 
However, it is important to note that the findings of our study 
are not the optimal result. By exploring a more diverse range of 
transmitter and receiver coil types, a better coil design pair may be 
discovered. 

3.4 Transmission Line Design 
Another critical design factor in the smart textile interface is the 
transmission line design. Our goals were twofold: minimize varia-
tion in parasitic capacitance and inductance, especially in wearable 
contexts with potential deformation, and reduce parasitic capaci-
tance to free up high-frequency spectrum for more sensor circuits. 
We explored four transmission line designs: 10mm-spaced, 5mm-
spaced, 2.5mm-spaced parallel lines, and twisted lines. These were 
chosen based on trade-offs between spacing and parasitic effects. 
Wider spacing, like the 10mm design, reduced capacitance but in-
creased inductance and susceptibility to external interference from 
the human body and textile deformation. Narrower spacing, such as 
the twisted design, reduced external interference but increased par-
asitic capacitance. To test how parasitic capacitance and inductance 
were affected by external influences, we initially measured these 
values using an LCR meter [3], then subjected the lines to three 
conditions: 90-degree bending (simulating typical deformations), 
180-degree folding (extreme deformations), and contact with the 
human body. After each manipulation, we remeasured capacitance 
and inductance. 

The results are shown in Table 2. We found that parallel transmis-
sion lines were significantly affected by the human body, causing 
notable capacitance changes. Extreme deformation also led to their 
inductance variations of up to 12%, 10%, and 5% for 10mm, 5mm, 
and 2.5mm-spaced designs, respectively. In contrast, the twisted 
transmission line design maintained consistent inductance and ca-
pacitance, despite having a higher capacitance (58𝑝 𝐹 ). In this work, 
we selected the twisted design for further study due to its simplicity, 
though the 2.5mm-spaced parallel design is also a viable option, 
as its inductance variations were smaller and capacitance varia-
tions can be potentially addressed by our sensor value estimation 
algorithm. 

To inform the following design and implementation of smart tex-
tile interfaces, we additionally conducted an experiment to measure 
the resistance, capacitance, and inductance of twisted transmission 
lines ranging from 200mm to 1200mm on the human body, with 
results shown in Figure 5. The properties showed a strong corre-
lation with length (𝑅 2 = 0.99). For the longest line (1200mm), the 
capacitance was 113.5pF, which could limit impedance changes in 
the high-frequency range. However, we confirmed that the low-
frequency range is sufficient to support up to three sensor circuits, 
as discussed in Section 5. 

Figure 5: The capacitance, inductance and resistance of the 
twisted transmission lines shown by the length. 
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Receiver Coil 

Transmitter Coil 
Outer: 20mm 
Inner:0mm 

Inductance: 1.21 𝜇 H 

Outer: 30mm 
Inner:10mm 

Inductance: 2.93 𝜇 H 

Outer: 40mm 
Inner:20mm 

Inductance: 4.54 𝜇 H 

Outer: 20mm, Inner:0mm 
Inductance: 0.60 𝜇 H 

k (perfect alignment): 0.35 
k (5mm misalignment): 0.21 
k (10mm misalignment): 0.10 

k (perfect): 0.29 
k (5mm): 0.28 
k (10mm): 0.24 

k (perfect): 0.25 
k (5mm): 0.29 
k (10mm): 0.29 

Outer: 30mm, Inner:0mm 
Inductance: 2.31 𝜇 H 

k (perfect): 0.71 
k (5mm): 0.35 
k (10mm): 0.13 

k (perfect): 0.60 
k (5mm): 0.44 
k (10mm ): 0.16 

k (perfect): 0.33 
k (5mm ): 0.35 
k (10mm ): 0.27 

Outer: 40mm, Inner:0mm 
Inductance: 7.36𝜇 H 

k (perfect): 0.64 
k (5mm ): 0.44 
k (10mm): 0.12 

k (perfect): 0.79 
k (5mm): 0.51 
k (10mm): 0.17 

k (perfect): 0.64 
k (5mm): 0.52 
k (10mm): 0.26 

Table 1: The dimensions, inductance, and coupling factor (k) of various coil designs. 

10mm-spaced 
transmission lines 

5mm-spaced 
transmission lines 

2.5mm-spaced 
transmission lines 

twisted 
transmission lines 

Straight 
capacitance: 4.76pF 
inductance:1.22𝜇 H 

capacitance: 6.19pF 
inductance:1.15𝜇 H 

capacitance: 7.5pF 
inductance:0.95𝜇 H 

capacitance: 58.33pF 
inductance:0.21𝜇 H 

Bending at 90 degrees 
capacitance: 4.47pF 
inductance:1.23𝜇 H 

capacitance: 6.10pF 
inductance:1.15𝜇 H 

capacitance: 7.45pF 
inductance:0.96𝜇 H 

capacitance: 58.06pF 
inductance:0.21𝜇 H 

Folding at 180 degrees 
capacitance: 4.97pF 
inductance:1.07𝜇 H 

capacitance: 6.42pF 
inductance:1.03𝜇 H 

capacitance: 7.67pF 
inductance:0.89𝜇 H 

capacitance: 57.64pF 
inductance:0.21𝜇 H 

On-Body 
capacitance: 30.53pF 
inductance:1.23𝜇 H 

capacitance: 34.26pF 
inductance:1.15𝜇 H 

capacitance: 37.82pF 
inductance:0.95𝜇 H 

capacitance: 59.62pF 
inductance:0.22𝜇 H 

Table 2: The capacitance and inductance of various transmission line designs under different conditions. 

4 Sensor Value Estimation 
Once the coil and transmission line designs for smart textile inter-
faces were determined, another key challenge was the development 
of an algorithm to extract sensor values from the measured S11 
spectrum. While it is possible to use an optimization algorithm 
to estimate unknown sensor values by iterating through all possi-
ble parameters to find the best fit to the mathematical impedance 
model, this approach was ineffective for two reasons. First, although 
many variables such as 𝐿𝑡 , 𝐿𝑟 , 𝐶𝑆 𝑀 𝐴 , and other preset component 
values in sensor circuits can be assumed known in the fabrication 
process, the mathematical model still involved too many unknown 
parameters, such as 𝑘 , 𝐶𝑙 𝑖𝑛𝑒 and each sensor value. Thus, directly 
using optimization algorithms often leads to convergence to local 
minima and is unstable in finding the true global solution. Second, 
the mobile impedance reader was typically limited in capturing a 

high-resolution, high-precision impedance spectrum, which con-
strained both the quality and quantity of data points available for 
optimization algorithms. This limitation could cause the fitting 
process to fail, as the optimization might converge to inaccurate 
solutions due to insufficient detailed information. These limitations 
necessitated alternative approaches to reliably extract sensor values 
from the measured impedance spectrum. 

To overcome this challenge, our core idea is to use impedance at 
the resonant frequency of each sensor circuit to predetermine some 
factors in steps. This is because at resonance, the sensor circuit’s 
impedance is near zero if the resistance is low. This creates a short 
circuit in the smart textile interface, simplifying the circuit model 
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and allowing the equations to be approximated as follows: 

|𝑍 ( 𝑓 ) | = | 1 
1 

(2𝜋 𝑓 𝐿𝑡 ) 𝑗 − 
( (2𝜋 𝑓 )𝑘 

√ 
(𝐿𝑡 𝐿𝑟 ) 𝑗 ) 2 

2𝜋 𝑓 (𝐿𝑙 𝑖𝑛𝑒𝑖 +𝐿𝑟 ) 𝑗 

+ 2𝜋 𝑓 𝐶𝑆 𝑀 𝐴 𝑗 
| (6) 

where 𝑖 indicates the ith sensor circuit in which the resonance 
occurs and 𝐿𝑡 , 𝐿𝑟 , 𝐶𝑆 𝑀 𝐴 , 𝐿𝑙 𝑖 𝑛𝑒𝑖 and 𝑅𝑙 𝑖𝑛𝑒𝑖 are known during fabri-
cation process (see Appendix A for approximation details). 

By leveraging this idea, we additionally incorporated a reference 
circuit with known LC components into the smart textile interface. 
Since the values of the LC components in the reference circuit 
were predetermined, we can directly obtain its resonant frequency 
and use the resonant frequency as a starting point to navigate the 
challenges in estimating sensor values. As a result, our algorithm 
can be divided into the following three steps. 

4.1 Step 1: Calculating Coupling Factor 
In light of Eq 6, we can calculate the coupling factor directly at the 
resonant frequency of the reference LC circuit, without needing to 
estimate sensor values and the capacitance of each transmission line 
(𝐶𝑙 𝑖 𝑛𝑒𝑖 ). However, to do this, we must first obtain the impedance at 
that resonant frequency. Due to the limited number of data points 
measured from the reader, the S11 value at the exact resonant 
frequency may not be directly available. To address this, we used 
a linear interpolation technique to estimate the S11 value at the 
desired frequency. The system then converted the S11 value to the 
impedance at the resonant frequency, allowing the coupling factor 
to be calculated using Eq. 6. 

4.2 Step 2: Estimating Capacitive or Inductive 
Sensor Values 

Once the coupling factor (𝑘 ) was estimated, our second step was to 
identify the resonant frequency of each sensor circuit and derive 
the corresponding capacitive or inductive sensor values. This step 
was challenging, as the lowest peaks in the absolute impedance 
spectrum do not correspond to the actual resonant frequencies 
of these sensor circuits, as illustrated by the red lines in Figure 6. 
The reactive components, including the inductance of the receiver 
and transmitter coils and the impedance of the transmission lines, 
interact with sensor circuits significantly, causing complex shifts 
in impedance spectrum (see Appendix A for details). To accurately 
find the resonant frequency of each RLC circuit, we applied Eq. 6 
in reverse. 

Specifically, given the coupling factor (𝑘 ) is known, Eq. 6 be-
comes an equation with a single variable, the frequency (𝑓 ). Thus, 
our algorithm can plot Eq. 6 across the frequency spectrum for each 
sensor circuit and search for intersections with the impedance spec-
trum that was converted and interpolated from the measured S11 
spectrum, (as shown by the green lines in Figure 6). The frequencies 
at these intersections are potential resonant frequencies for the sen-
sor circuits, as they satisfy Eq. 6. To determine which frequency is 
the resonant frequency of each sensor circuit, the algorithm seeks 
for the points where the impedance trend increases. This is because 
this increasing trend indicates that the system is approaching to 
another resonance due to the sensor circuit. Finally, the algorithm 
select the frequency closest to the last estimated resonant frequency 

Figure 6: The absolute impedance spectrum of the entire 
system and the supposed resonant frequencies (red line) of 
each sensor circuit used in the model validation. The green 
lines illustrate the value of Eq. 6 calculated by the two sensor 
circuits with lower resonant frequency. Their intersections 
with the measured impedance spectrum accurately represent 
the resonant frequencies of the sensor circuits. Note that the 
resonant frequency of the third sensor circuit is 30.9MHz, 
which exceeds 30MHz and is not plotted. 

as the resonant frequency for each sensor circuit. However, it is 
important to note that for sensor circuits incorporating resistive 
sensors, we assumed that their resonant frequencies are predeter-
mined during the fabrication process and therefore do not require 
estimation. 

Once the resonant frequency is determined, our algorithm can 
easily derive the capacitive or inductive sensor value in each sensor 
circuit using the formula of the resonant frequency of an RLC circuit 
[41]: 

𝑓 = 
1 

2𝜋 
√ 
𝑙𝑖 𝑐𝑖 

(7) 

where one of 𝑙𝑖 and 𝑐𝑖 is assumed to be known during the fabri-
cation process and the other is the sensor value. 

4.3 Step 3: Approximating Transmission Line 
Capacitance and Resistive Sensor Values 

After determining the capacitive and inductive sensor values in 
each sensor circuit, our final step was to estimate resistive sensor 
values. Unlike the previous steps, there were no alternative meth-
ods or shortcuts available to estimate the resistive sensor values. 
We were still required to solve the capacitance of each transmis-
sion line (𝐶𝑙 𝑖 𝑛𝑒𝑖 ) first before proceeding with the resistive value 
approximation. 

Our strategy for estimating 𝐶𝑙 𝑖 𝑛𝑒𝑖 was adjusting each 𝐶𝑙 𝑖𝑛𝑒𝑖 until 
the lowest peaks’ frequencies from the predicted S11 spectrum align 
with those from measure S11 spectrum. This strategy was designed 
due to the insight that the value of 𝐶𝑙 𝑖𝑛𝑒𝑖 can significantly influence 
the peak positions in the S11 or impedance spectrum, as these peaks 
occur when all reactive components in the circuits of the smart 
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textile interface cancel each other out. However, it is important to 
note that this estimation may be not accurate enough due to the 
limited resolution of the reader’s measurements. 

Once the transmission line capacitance was roughly estimated, 
the algorithm shifted to approximate resistive sensor values. To 
achieve this, we employed a regression fit optimization algorithm 
(i.e. Trust Region Reflective algorithm in our implementation) to 
search for the best-fitting resistive sensor values that would allow 
the predicted S11 spectrum to closely align with the measured S11 
spectrum. The initial guess for this optimization algorithm was 
based on the last estimated resistive values. Simultaneously, the 
algorithm refined the transmission line capacitance as well, to fur-
ther improve the alignment between the measured spectrum and 
the estimated spectrum. This approach allowed the algorithm to 
approximate the resistive sensor values with reasonable accuracy. 
Note that this accuracy was primarily dependent on the precision 
and resolution of S11 or impedance spectrum. Currently, we fo-
cused on the S11 spectrum because it was directly measured by our 
reader. Converting the S11 spectrum to the impedance spectrum 
may introduce inaccuracies, as high impedance values result in 
only minor changes in the S11 spectrum, making them difficult to 
detect with the reader’s limited resolution. 

5 Simulation-based Evaluation 
To assess the accuracy of the sensor value extraction algorithm 
under varying conditions, we conducted a simulation-based eval-
uation. This simulation accounted for real-world factors such as 
device sampling resolution and data noise to mimic actual collected 
data. This approach was chosen due to the vast number of potential 
circuit configurations and conditions in a smart textile interface, 
making physical testing impractical. Simulations enabled us to gain 
a deeper understanding of the algorithm’s performance across dif-
ferent scenarios (e.g., varying transmission line lengths and sensor 
values) and provided valuable insights for future system design, 
optimization, and implementation. 

5.1 Experiment 1: Coupling Factor Estimation 
The first step in our sensor value estimation algorithm was cal-
culating the coupling factor. This experiment aimed to assess the 
accuracy of the calculated coupling factor across different reference 
circuit configurations and transmission line lengths in a smart tex-
tile interface, providing insights for designing the reference circuit. 

5.1.1 Method. To evaluate the performance of coupling factor 
estimation, we developed a simulator to generate multiple S11 
spectra simulating measurements from the reader on various circuit 
setups. Using these spectra, we calculated coupling factors with 
our algorithm and compared them to ground-truth values to assess 
accuracy. 

The simulator used Eq. 1 to Eq. 6, validated through Section 3.2.1. 
To simplify the process, we assumed the smart textile interface only 
involved the reference circuit with an open-circuited transmission 
line, as other sensor circuits would be designed to avoid overlap 
with the reference circuit’s spectrum. 

The parameters 𝐿𝑡 , 𝐶𝑆 𝑀 𝐴 , and 𝐿𝑟 were set to 0.6𝜇 𝐻 , 10pF, and 
4.54𝜇𝐻 based on coil design studies. The coupling factor ranged 

from 0.25 to 0.29 (perfect and weak alignment) randomly. Transmis-
sion line lengths were varied across four ranges: <25cm, 25-50cm, 
50-75cm, and 75-100cm. For each range, the simulator randomly 
selected a length and generated the corresponding 𝐶𝑙 𝑖 𝑛𝑒 , 𝐿𝑙 𝑖𝑛𝑒 , and 
𝑅𝑙 𝑖 𝑛𝑒 values according to the transmission line design results. We 
simulated resonant frequencies of the reference circuit from 1 MHz 
to 30 MHz in 100 steps, fixing the inductance-to-capacitance ratio 
at 1, and calculated the specific capacitance and inductance values. 

To simulate real-world conditions, we limited the sampling reso-
lution to 101 points across the spectrum and added Gaussian noise 
with three decimal places to each S11 value, reflecting the reader’s 
resolution and precision. Each condition was repeated 1,000 times 
to account for randomness. In total, the simulator generated 4 
transmission line length ranges × 100 resonant frequencies × 1,000 
repetitions, producing 4,000,000 S11 spectra for analysis. For each 
spectrum, we applied the first step of our algorithm to estimate 
the coupling factor, assessing accuracy by comparing the estimated 
value to the ground truth. 

5.1.2 Results. We averaged the accuracies across 1,000 repetitions 
and presented the results in Figure 7a. We found that transmission 
line length had no significant impact on accuracy, but the coupling 
factor estimation was less stable when the reference circuit’s reso-
nant frequency was below 10 MHz, ranging from 84% to 98%. This 
instability occurred because, at lower frequencies, the S11 values 
exhibited more pronounced changes when reactive components 
cancel out each other. If the sampling missed these changes, the 
interpolated spectrum became less accurate, leading to discrepan-
cies in the coupling factor. Above 10 MHz, accuracy stabilized at 
about 99%. We recommend setting the reference circuit’s resonant 
frequency above 10 MHz for optimal accuracy and stability. 

5.2 Experiment 2: Sensor Value Estimation for 
Single Sensor 

Next, we validated the accuracy of sensor value estimation with a 
single sensor integrated into the smart textile interface. We used a 
similar simulation approach to test accuracy under different sen-
sor circuit configurations and varying transmission line lengths. 
Coil alignments were not tested, as previous experiments already 
demonstrated high accuracy in coupling factor estimation. 

5.2.1 Method. We modified the simulator from the previous ex-
periment to meet the objectives of this one. First, we standardized 
the reference circuit design with a resonant frequency of 27 MHz 
and an inductance-to-capacitance ratio of 1. According to results 
from previous experiments, this configuration can provide accurate 
estimates of the coupling factor. Second, while the transmission line 
length was still randomly selected within the four defined ranges, 
we introduced ±20% fluctuations in transmission line capacitance 
to simulate real-world conditions such as bending and folding. Our 
algorithm accounted for the initial capacitance, as the transmission 
line length is known during fabrication. We kept the resistance 
and inductance of the transmission line stable, as previous studies 
showed these parameters did not vary significantly under different 
conditions. We also added a sensor circuit, varying its resonant 
frequency from 1 MHz to 25 MHz in 100 steps and randomly as-
signing the inductance-to-capacitance ratio between 0.1 and 2. This 
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setup allowed simulation of various sensor values. We capped the 
resonant frequency at 25 MHz to avoid overlap with the reference 
circuit’s frequency. The sensor circuit’s resistance ranged from 
10 ohms to 60 ohms, varying ±50% in each iteration to simulate 
changes in resistive sensor values. The other settings, including 
transmission line ranges and Gaussian noise, were the same as in 
the previous experiment. 

In total, the simulator generated 4,000,000 S11 spectra (4 ranges 
× 100 frequencies × 1,000 repetitions). For each spectrum, we first 
calculated the coupling factor and then estimated the sensor values. 
Since accuracy for capacitive and inductive sensor values is ex-
pected to be identical (Eq. 8), we focused on capacitive sensor value 
estimation. Accuracy was determined by dividing the estimated 
sensor value by the set value. 

5.2.2 Results. We analyzed the accuracy of capacitive and resistive 
sensor value estimations separately, as they were addressed in 
different algorithm steps. 

Figure 7b shows the accuracy of capacitive sensor value estima-
tion. Below 5 MHz, accuracy was unstable, similar to the coupling 
factor estimation. Above 5 MHz, accuracy stabilized at 99%. How-
ever, longer transmission lines reduced accuracy, particularly above 
25 MHz, as longer lines increased capacitance, causing effects like 
short circuits. For transmission lines over 50 cm, accuracy dropped 
below 90% at high frequencies, emphasizing the importance of 
accounting for transmission line length when configuring sensor 
circuits. 

For resistive sensor value estimation, Figure 7c shows similar 
trends. Accuracy was low below 5 MHz but improved above 5 MHz. 
When transmission lines were under 25 cm, accuracy exceeded 
90% from 5 MHz to 24 MHz, but dropped with longer lines. Ex-
perimenting with inductance-to-capacitance ratios, we found that 
limiting the ratio to 0.5 improved accuracy, especially for longer 
transmission lines, e.g., from 84% to 93% in the 50-75 cm range. 
Lowering the ratio helped mitigate accuracy loss with longer lines, 
improving resistive sensor estimation performance. 

Lastly, we calculated transmission line capacitance estimation ac-
curacy, which averaged 97% across configurations and line lengths. 
This indicates the algorithm’s effectiveness in estimating capaci-
tance, which could be useful to monitor line conditions such as 
bending or physical disturbances, enabling potential applications 
in activity sensing [77]. 

5.3 Experiment 3: Sensor Value Estimation for 
Multiple Sensors 

Estimating sensor values in the concurrent operation of multiple 
sensors posed additional challenges compared to a single sensor. 
For example, if the resonant frequencies of multiple sensor circuits 
were too close, interference could complicate estimation. In our 
experiment, we evaluated the performance of our algorithm with 
three sensors embedded in the smart textile interface, using a similar 
simulation-based approach to assess the impact of different circuit 
configurations on the accuracy of multi-sensor value estimation. 

5.3.1 Method. We used the same simulator as in the previous ex-
periment, incorporating three sensor circuits into the smart textile 
interface. To assess how different configurations affect accuracy, 

we varied the resonant frequency of one sensor circuit from 5 MHz 
to 20 MHz in 100 steps, adjusting the gap between its resonant 
frequency and those of the other two circuits. The frequency gap 
ranged from 1 MHz to 5 MHz in 1 MHz increments, with all sen-
sor circuits constrained to a range between 1 MHz and 25 MHz. 
The inductance-to-capacitance ratio of each sensor circuit was ran-
domly assigned between 0.1 and 2. We limited the transmission 
line length to 0-25 cm, as longer lines were shown to reduce the 
available spectrum in the previous experiment. The modified simu-
lator generated 500,000 S11 spectra for analysis (100 frequencies 
× 5 gaps × 1,000 repetitions). We focused on estimating the sensor 
values of the circuit with the middle resonant frequency, as it was 
most affected by the neighboring circuits. The same algorithm was 
applied to estimate sensor values, allowing comparison with the 
single-sensor scenarios. 

5.3.2 Results. Figure 8a shows the accuracy of capacitive sensor 
value estimation. As expected, smaller frequency gaps slightly re-
duced accuracy. For example, with a 1 MHz gap, accuracy averaged 
97%, while a 5 MHz gap resulted in 98%, closely matching the single-
sensor scenario at 99%. The middle sensor circuit, influenced by 
both neighboring circuits, was the most challenging, but the other 
two circuits, with less interference, showed better accuracy. These 
results suggest the potential for expanding to more than three sen-
sors in a smart textile interface. For instance, with a 2 MHz gap, up 
to 12 sensors could fit within the 1 MHz to 25 MHz range, though 
further validation is needed. 

Figure 8b shows resistive sensor value estimation accuracy. Be-
low 10 MHz, accuracy was unstable due to difficulties estimating 
resonant frequency and transmission line capacitance, especially 
when one sensor circuit had a resonant frequency below 5 MHz. 
Above 10 MHz, accuracy stabilized. With a 1 MHz frequency gap, 
accuracy dropped to 74%, indicating increased interference. How-
ever, with a 5 MHz gap, accuracy rose to 88%, which is close to the 
92% accuracy of the single-sensor scenario. This shows that our 
system can maintain high accuracy with multiple sensors if the 
frequency gap is sufficiently large. 

5.4 Experiment 4: Comparison with Real-World 
Performance 

To understand how the simulation study results deviate from real-
world performance, we implemented a physical prototype and com-
pared its accuracy in estimating the coupling factor (𝑘 ), sensor 
capacitance (𝑐 ), and resistance (𝑟 ) with the simulated test results. 

5.4.1 Apparatus. We created a smart textile interface prototype 
using the selected coil and transmission line designs. The prototype 
included three sensor circuits with resonant frequencies of 9.9 MHz, 
14.5 MHz, and 19.9 MHz, each connected to a 30 cm transmission 
line. To simulate changes in capacitive or resistive sensor values, we 
prepared a set of fixed capacitors and resistors, enabling controlled 
adjustments to the resonant frequency of the middle-frequency 
sensor circuit from 12.2 MHz to 16.6 MHz and resistance from 10 
to 50 ohms in five steps. We implemented a reader using NanoVNA 
and the chosen transmitter coil design. Aligning the reader’s coil 
randomly with the interface’s coil within 10mm, we measured the 
S11 spectrum from 5 MHz to 30 MHz with 101 data points. This 
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Figure 7: (a) The accuracy of coupling factor estimation across frequencies ranging from 1 MHz to 30 MHz (b) The accuracy of 
estimating single capacitive sensor value across frequencies ranging from 1 MHz to 25 MHz, considering four different ranges 
of transmission line lengths. (c) The accuracy of estimating single resistive sensor value across frequencies ranging from 1 
MHz to 25 MHz, considering four different ranges of transmission line lengths. 

Figure 8: The results of sensor value estimation when three sensor circuits were integrated into a smart textile interface. (a) 
The accuracy of estimating capacitive/inductive sensor values across frequencies ranging from 5 MHz to 20 MHz, considering 
different frequency gap. (b) The accuracy of estimating resistive sensor values across frequencies ranging from 5 MHz to 20 
MHz, considering different frequency gap. 

setup was designed to mirror the simulation environment, ensuring 
consistency between simulated and physical test conditions. 

5.4.2 Method. To account for human body influence, we recruited 
10 participants (9 male, 1 female) and attached the prototype to 
their backs, similar to Figure 3. We then randomly altered the coil 
alignment five times per participant, measuring the coupling factor 
using the standard approach [36] for each alignment. In addition, 
we adjusted the capacitor and resistor in the middle-frequency 
sensor circuit to have five levels of capacitance and resistance. 
For each configuration, we collected 20 S11 spectra to account for 
possible impacts caused by body postures. In total, we collected 3000 
impedance spectra (10 people × (5 coupling factor + 5 capacitance + 
5 resistance) × 20 repetitions) to evaluate the accuracy of estimating 
the coupling factor, capacitance, and resistance. 

5.4.3 Results. The average accuracies for estimating the coupling 
factor (𝑘 ) and capacitance (𝑐 ) were 98% and 96%, similar to the 
simulation results of 99% and 98% respectively. When converted to 
actual capacitance, the mean absolute error (MAE) of capacitance 
estimation was 0.45𝑝 𝐹 . For resistance estimation, the average ac-
curacy across all participants was 91%, ranging from 87% to 94%, 
with a mean absolute error of 2.2 ohms. These results aligned with 

the simulation outcomes (88% for the 5 MHz gap and 92% for sin-
gle sensor estimation). The estimation of resistance exhibited a 
lower degree of accuracy in contrast to the capacitance estimation, 
potentially attributable to inaccuracies in the fitting process and 
the reader’s limited resolution. Nevertheless, the accuracy levels 
for both resistance and capacitance estimation were sufficient for 
common textile sensors [13, 53] to achieve activity detection, as the 
changes in sensor values exceeded the estimation error. This was 
further validated through our user study in Section 7. Overall, the 
result of the real-world experiments indicates that the simulation 
results closely matched the real-world performance of this proto-
type, validating the reliability of our model and the insights gained 
from the simulation study. 

6 IMPLEMENTATION 
In this section, we will discuss the detailed implementation of our 
smart textile interface and operating system. 
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6.1 Battery-free, IC-less and Wireless Smart 
Textile Interface 

Our smart textile interface, consisting of a receiver coil, transmis-
sion lines, constant RLC components, and textile sensors, was imple-
mented on a Muslin Fabric Cotton substrate [5]. We opted 34AWG 
Litz Wire [1], a common choice for low-resistance and insulated 
wiring [12, 22, 34] to fabricate the receiver coil and transmission 
lines. We employed a Brother SE600 embroidery machine [9] to 
embroider the wire as bobbin thread through straight stitches with 
the stitch length of 2.5mm. For constant RLC components, we used 
2-pin 0604 SMD components soldered onto the Litz wires, following 
the method described in [47]. Since SMD inductors typically have a 
low Q factor, we replaced them with embroidered or I-shaped coil 
inductors when higher inductance was needed. 

Our interface supports three types of sensors, including resistive, 
inductive, and capacitive sensors. To demonstrate its capabilities, 
we implemented four representative sensors. Their dimensions and 
fabrication details are shown in Figure 9. Note that typical capacitive 
sensors operate on either self-capacitance or mutual capacitance 
principles [29]. Self-capacitance is the capacitance between an elec-
trode and earth ground, while mutual capacitance occurs between 
two electrodes. Our system is incompatible with self-capacitance 
sensors due to the absence of a strong earth ground, resulting 
in minimal capacitance changes. In contrast, mutual capacitance 
sensors project capacitance changes effectively onto the resonant 
circuit, making them compatible with our system. Additionally, 
resistive sensors are commonly used in textile applications due to 
their robustness in varied environmental conditions, including wet 
environments where capacitive sensors may struggle. 

6.2 Reader and Operating System 
We implemented the reader as part of our system for capturing 
sensor data. This reader consisted of a NanoVNA, connected to a 
transmitter coil measuring 10mm by 10mm, as shown in Figure 
1. Based on results of usable frequency range from section 5, the 
reader is designed to perform sweeps of frequencies ranging from 
5 MHz to 30 MHz with a total of 101 sampling points. This entire 
operation is completed within 0.1 seconds, resulting in a sampling 
rate of 10 Hz for our system in its current state. While this sampling 
rate may not be considered high, it is sufficient for the requirements 
of a real-time interactive system. We believe that higher sampling 
rate can be achieved in future iterations of the device by integrating 
dedicated frequency modulation chips and optimizing the signal 
processing pipeline. Once the reader captured the impedance data, 
it passes them to a laptop (Thinkpad Carbon X1) to process the 
signals. Our sensor signal extraction process is implemented in 
Python. We employed the Trust Region Reflective least squares 
algorithm as our regression fit algorithm throughout the process. 

6.3 Example Applications 
We present two usage scenarios to exemplify the capability of our 
system. Our demo applications were designed around everyday 
objects that frequently come into direct contact with mobile or 
wearable devices, including pockets and gloves. We aim to show-
case how our approach can enable these everyday objects to become 

interactive, while still maintaining their passive nature and operat-
ing without the need for external hardware and batteries embedded 
in textile. 

6.3.1 Shirt. We incorporated an inductive object detector, a capac-
itive pressure sensor, and a resistive button array into a battery-less 
and IC-less smart textile interface on a shirt (Figure 1a). The in-
ductive object sensor, in conjunction with an capacitor of 9.9 𝑝 𝐹 , 
operated within the frequency range from 20M to 25 MHz. This 
sensor was strategically placed on a lower pocket of the shirt to 
detect metallic objects like keys. On the right shoulder of the shirt, 
we integrated a capacitive pressure sensor that worked with a in-
ductor of 6.5 𝜇𝐻 . This sensor resonated within the frequency range 
from 10M to 15 MHz and was designed to capture the pressure 
applied to the shoulder region, commonly caused by objects such 
as a shoulder bag. Additionally, we included a button array sensor 
on the shirt sleeve. This sensor, in conjunction with an inductor 
of 23.9 𝜇 𝐻 and an capacitor of 19.1 𝑝 𝐹 , operated at the frequency 
around 7 MHz. The receiver coil was placed near the front pocket 
of the shirt, ready for the coupling from the reader. 

This shirt has several applications, including health tracking, 
where a smartphone app monitors shoulder pressure and reminds 
the user to relieve it, preventing strain or pain. It can also detect 
metallic objects, like keys or access cards, in the pocket and trigger 
notifications if they’re left behind. Additionally, the shirt features 
shortcut buttons on the sleeve for controlling music playback or 
interacting with an AI assistant. 

6.3.2 Glove. Although gloves are not typically used for storing 
personal devices, they share proximity with smartwatches on the 
user’s wrist. With this in mind, we integrated the smart textile 
interface into a glove, placing the receiver coil in a position that 
corresponds to where a smartwatch would typically be situated on 
the wrist (Figure 10a). We incorporated three capacitive bending 
sensors on the glove to capture the gestures of thumb, index and 
middle fingers. Each bending sensor has been carefully paired with 
capacitors and inductors that possess the appropriate values, which 
allows each sensor to operate within designated frequency ranges. 

This glove can serve as an extension of the input device on the 
user’s smartwatch, allowing users to control functions like answer-
ing calls with simple gestures such as peace and fist (Figure 10b 
and 10c). Furthermore, the integration of the glove can enhance VR 
and AR experiences by empowering users to engage in immersive 
interactions without having to worry about charging the glove. 

7 User EVALUATION 
We conducted an experiment to assess the effectiveness of our 
implementation of the interactive shirt prototype. The primary 
objective was to measure the accuracy of our approach in detecting 
various user inputs supported by this prototype. 

7.1 Participants 
10 participants were recruited for the study with a mix of 8 males 
and 2 females, and an average age of 23. All participants are right-
handed to facilitate the operation of the sensor placed on the left 
arm using the dominant hand. 
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Figure 9: Four representative textile sensors implemented in our battery-free and IC-less smart textile interface. (a) A resistive 
button array consisting of 3 pressure-sensitive buttons. Each button is constructed from two pieces of conductive fabric strip 
(width = 6mm)[6] sandwiching a circular piece of resistive foam (thickness = 1mm)[8]. The resistance of the button array is 60Ω 
with no pressure. When each button is pressed, the resistance will drop to 0Ω to 15Ω, 15Ω to 30Ω and 30Ω to 45Ω respectively 
according to the pressure applied. (b) An inductive object detector consisting of a 10-turns coil (25mm by 40mm) with an 
inductance of 5.4 uH. The inductance will decrease accordingly when metallic object (e.g. a key, a card embedded with coils) 
approaches. (c) A capacitive pressure sensor constructed by two pieces of conductive fabric (17mm by 34mm) sandwiching 
two 10mm × 10 mm × 2mm square pieces of resistive rubber [2]. The two conductive layers are isolated by a layer of cotton 
fabric [5]. The default capacitance is 15pF and will increase to 20 pF when 2kg pressure is applied. (d) a capacitive bend sensor 
constructed by two pieces of conductive fabric (10mm by 25mm) sandwiching a piece of resistive foam (thickness = 1mm). The 
two conductive layers are isolated by a layer of cotton fabric. When the sensor is bent from 0 to 90 degrees, the capacitance will 
increase from 7pF to 15pF. 

Figure 10: Our glove prototype integrated with BIT. (a) The 
glove features three bend sensors on the thumb, index, and 
middle fingers to capture finger gestures. In our implemen-
tation, for example, the glove can detect (b) peace and (c) fist 
gestures. 

7.2 Procedure 
Prior to the study, participants were provided with a concise overview 
of our prototype. Note that our participants had varying body 
shapes and typically wore clothing sizes ranging from small to 
large. During the study, they were instructed to wear our shirt 
and carry the hardware in the shirt’s front pocket. Throughout the 
study, participants were given the freedom to adopt any posture 
they deemed comfortable. To evaluate the concurrent operation 
of the three sensors, we asked participants to perform 60 tasks, 
with each task simultaneously testing all the three sensors. Specif-
ically, each task consisted of: 1) carrying a shoulder bag to test 
the pressure sensor, 2) placing an object into a lower pocket to 
test the object detector, and 3) pressing a button on a sleeve to 
test the button array. For the bag carrying activity, participants 
carried either a 0.7 kg or 1.6 kg bag. For the object placement activ-
ity, participants placed either an apartment key or a plastic credit 
card into a pocket. For the button pressing activity, participants 
pressed one of the three buttons on the sleeve. This resulted in 12 

Figure 11: Confusion Matrix for (a) resistive button array, (b) 
capacitive pressure sensor, (c) inductive object detector. 

unique combinations (2 bag weights × 2 objects × 3 buttons). Each 
combination was repeated 5 times, leading to a total of 60 trials. we 
recorded S11 spectra across the 5 MHz to 30 MHz range using our 
hardware. Additionally, we collected S11 spectra 10 times while 
participants were in an idle state to serve as baseline data. In total, 
700 S11 spectra were retrieved for analysis, with each participant 
contributing 10 spectra during the idle state and 60 spectra during 
the active tasks (10 participants × 70 spectra each). 

7.3 Results 
We employed our algorithm to estimate sensor values for each 
S11 spectrum. Then, we applied a decision tree classifier to catego-
rize the estimated sensor signals. Due to the considerable variabil-
ity in body characteristics among participants, the sensor values 
showed significant variation. Consequently, our analysis empha-
sized within-subject accuracy, using five-fold cross-validation to 
validate the classification performance. It is important to note that 
the variation in sensor signals stems from the sensor itself, which 
are not our focus. Our objective is to study whether the sensor val-
ues estimated from our system are accurate enough for classifying 
user interactions. 
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The results are shown in the confusion matrix in Figure 11. 
For the resistive button array, the average accuracy was 88%. The 
confusion matrix indicated significant overlap between the first 
and second buttons, likely due to participants applying varying 
levels of force across different trials. This variation may cause their 
resistance values to become similar. But, if we group these two 
buttons into the same category, the average accuracy can increase 
to 93%. 

On the other hand, the capacitive pressure sensor demonstrated 
a higher average accuracy of 91%. The primary source of confusion 
was from the two tasks of carrying a shoulder bag with two different 
weights. This is likely because even the same participant might 
carry the bag differently, causing variations in pressure and sensor 
readings. Despite that, our estimated capacitive sensor values can 
still show acceptable accuracy for detecting this interaction with 
capacitance changes ranging from 3.0 𝑝 𝐹 to 6.0 𝑝 𝐹 across all the 
cases of carrying the bag (around 1.5 MHz of frequency change 
between cases). 

Lastly, the inductive object detector achieved 100% accuracy. 
It demonstrated that the estimated inductive sensor values can 
reliably distinguish between two different objects and idle state 
with inductance changes of around 0.8 𝑢 𝐻 and 1.5 𝑢 𝐻 (around 
2.5 MHz of frequency change between cases). Since the task was 
less influenced by participant behavior and the sensor robustly 
established a higher frequency change, the accuracy reached higher 
value compared with capacitance pressure sensor. This suggests 
that our system can reliably monitor user interactions given robust 
and well-designed sensors, without the incorporation of batteries 
and ICs into textiles. 

In addition, we also examined whether different combinations 
of tasks resulted in varying accuracy. As a result, no significant 
differences were observed. 

8 LIMITATIONS AND FUTURE WORK 
In this section, we discuss the limitations of our work and propose 
potential directions that could further advance it. 

Data accuracy, readout speed and power consumption of reader. 
Our current implementation is limited in terms of accuracy and 
readout speed, making it less suitable for applications that require 
high-speed tracking of subtle sensor changes, such as strain sen-
sors for detailed finger tracking. This limitation is primarily due 
to the measurement resolution and sampling rate of NanoVNA. 
However, we believe that developing a custom device integrated 
with dedicated frequency modulation chips [63] and a finely tuned 
measurement circuit could significantly mitigate this issue. One po-
tential strategy to optimize performance using the custom device is 
to use focused scanning of pertinent frequency ranges. For instance, 
we could concentrate impedance measurements solely on relevant 
resonant frequencies and update the entire spectrum at longer in-
tervals. This approach would allow for enhanced resolution and 
quicker readings within the sensor’s operational frequency range. 
Another intriguing solution worth exploring is the multitone tech-
nique, where multiple frequencies are merged into a singular signal 
for concurrent impedance analysis. While this method promises 
faster readout speeds, there may be a potential trade-off in terms 

of measurement accuracy. Therefore, further investigation is neces-
sary to determine the suitability of this technique, particularly for 
sensors that prioritize speed over accuracy. 

Additionally, power consumption is another critical considera-
tion in the design of the reader. Currently, we used NanoVNA as the 
reader, which consumes 600mW according to the datasheet [7]. This 
power consumption level could be too high for battery-powered 
or portable devices. To address this issue, we plan to reduce power 
consumption. This could involve selecting low-power components, 
optimizing the measurement circuit [58], and employing power-
efficient operating modes. 

Voltage sensor. Our approach is based on impedance modulation, 
which restricts its compatibility with sensors based on voltage, such 
as microphones, EMG electrodes, and photodiodes. Nevertheless, a 
potential solution to address this issue is to incorporate a varicap, a 
compact two-pin component capable of converting voltage signals 
into variable capacitance. With varicaps, we could enhance our ap-
proach to support a wider range of sensors. However, incorporating 
varicaps presents a significant challenge in achieving high precision 
and speed in sensor readings. Therefore, our future research will 
focus on investigating this issue and finding ways to overcome it. 

Cross-textile interface. Our research is also based on the principle 
of relay resonators, which have the potential to transfer power 
across textile surfaces using proper transmitting and receiver coils. 
However, the challenge is that unlike in our current research, where 
we could assume that the coils would be well aligned inside a pocket, 
the coils on the open surfaces of a textile object are subject to 
movement and instability, making alignment challenging. In order 
to address this issue, it is essential to investigate relay coil designs 
that can facilitate alignment, such as using larger or wider coils. 
This will be a crucial aspect of our future research in this direction. 

Toolkit. Our method stands out for being battery-free, devoid of 
integrated circuits, and wireless to operate, which reduces the cost 
and maintenance of smart textiles. Yet, for the broader adoption 
of our method, there’s a pressing requirement for tools that could 
facilitate the design and deployment of our solution on textile ob-
jects. One promising avenue for future research is a user-friendly 
software tool specifically designed to assist in designing and im-
plementing receiver coils, sensors, and transmission lines based on 
individual user interaction demands. For instance, upon inputting 
desired sensor locations and types, a system like this could au-
tomatically generate an optimized design for coils, sensors, and 
transmission lines. Furthermore, this software tool could also enable 
the direct conversion of the optimized design into an embroidery 
file, allowing for the quick realization of the desired idea. 

Pure-textile interface. Our current implementation requires the 
inclusion of small, rigid components such as resistors, capacitors, 
and inductors within textiles. However, with advancements in ma-
terial science research, it becomes possible to fabricate these rigid 
components entirely from textile-based materials. Consequently, 
future textile interfaces could potentially eliminate the need for any 
rigid components, relying solely on soft materials. This develop-
ment would signify a significant breakthrough in the field of smart 
textiles, expanding their range of applications across various use 
scenarios. 

Hardware integration. Our current system implementation relies 
on obtaining the impedance spectrum by measuring the S11 values 
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using a NanoVNA. However, we anticipate that our system can 
be easily integrated into smartphones and smartwatches in the 
near future, given that most personal computing devices already 
come equipped with built-in coils for wireless charging and NFC 
capabilities. This integration would enable the widespread adoption 
of smart textiles into everyday life. 

Fabrication with Other Conductive Threads and Fabric Substrates. 
In our implementation, we used Muslin Fabric Cotton as the fabric 
substrate and 34AWG Litz Wire as the conductive wire for proto-
typing. However, other textile materials and conductive threads, 
such as polyester fabrics and silver-coated nylon, may also be used 
for smart textile interfaces. While we expect that our system should 
work with these materials, their impact on interface impedance is 
unknown. For example, different conductive threads may introduce 
varying resistance and capacitance. Similarly, the fabric substrate 
can also influence the inductance and capacitance. Therefore, fur-
ther study is needed to assess how these materials affect system 
performance in the future. 

9 CONCLUSION 
This work addresses the challenges associated with incorporat-
ing rigid hardware components, such as integrated circuits (ICs), 
batteries, and connectors, into textile sensors. By leveraging near-
field electromagnetic coupling, BIT enables wireless power transfer 
and data acquisition from textile sensors without the need for tra-
ditional hardware embedded in textile. This approach improves 
usability, reduces manufacturing complexity, and minimizes the 
environmental impact of textile interfaces. A crucial aspect of our 
research is the development of a mathematical model and algorithm 
that take into consideration several challenges, including the in-
fluence of transmission lines and coil misalignment, allowing for 
accurate estimation of sensor readings. Through simulation-based 
and user-based experiments, we demonstrated the feasibility and 
versatility of BIT. This research has the potential to transform the 
landscape of smart textiles, making them more accessible and seam-
lessly integrated into people’s daily lives. By reducing reliance on 
rigid hardware components, our approach paves the way for a fu-
ture where smart textiles are not only comfortable to wear but also 
environmentally sustainable. This work represents a step forward 
in the evolution of wearable technology, offering new possibilities 
for innovative applications. 
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A Impedance Approximation at Resonant 
Frequency of Sensor Circuit 

In the sensor value estimation algorithm, we approximate the sys-
tem impedance to Eq 6 when a sensor circuit is at its resonant 
frequency and has low resistance. In this section, we provide the 
details of the equation’s derivation and explain why the resonant 
frequencies of sensor circuits are not at the lowest peak in the 
impedance spectrum. 

Based on the equivalent circuit model in Section 3.2, the recipro-
cal of the impedance of 𝑖𝑡 ℎ sensor circuit (𝑍𝑖 ( 𝑓 )) can be described 
as the following equation: 

1 
𝑍𝑖 ( 𝑓 ) 

= 
1 

1 
1 

(2𝜋 𝑓 𝑙𝑖 − 1 
2𝜋 𝑓 𝑐𝑖 

) 𝑗 +𝑟𝑖 
+2𝜋 𝑓 𝐶𝑙𝑖𝑛𝑒𝑖 𝑗 

+ 2𝜋 𝑓 𝐿𝑙 𝑖𝑛𝑒𝑖 𝑗 + 𝑅𝑙 𝑖 𝑛𝑒𝑖 
(8) 

When the frequency (𝑓 ) reaches the resonant frequency of 𝑘𝑡 ℎ 

sensor circuit (2𝜋 𝑓 = 1 √ 
𝑙𝑘 𝑐𝑘 

), the reciprocal of 𝑍𝑖 ( 𝑓 ) (𝑖 = 𝑘 ) be-
comes the following equation: 

1 
𝑍𝑘 ( 𝑓 ) 

= 
1 

1 
2𝜋 𝑓 𝐶𝑙 𝑖𝑛𝑒 𝑘 𝑗 + 1 

𝑟 𝑘 

+ 2𝜋 𝑓 𝐿𝑙 𝑖𝑛𝑒𝑘 
𝑗 + 𝑅𝑙 𝑖𝑛𝑒𝑘 

(9) 

If the transmission lines’ capacitance (𝐶𝑙 𝑖 𝑛𝑒𝑘 
) is small enough, the 

capacitive reactance of the transmission lines becomes negligible 
compared to the resistance of the sensor circuit. In this case, the 
resistance of the sensor circuit (𝑟𝑘 ) dominates the overall impedance. 
The equation can then be approximated as: 

1 
𝑍𝑘 ( 𝑓 ) 

= 
1 

1 
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+ 2𝜋 𝑓 𝐿𝑙 𝑖 𝑛𝑒𝑘 
𝑗 + 𝑅𝑙 𝑖𝑛𝑒𝑘 
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𝑗 

(10) 

Next, we calculate the total impedance of the smart textile inter-
face using Eq 3. We add up values of the reciprocal of impedance 
for all sensor circuits, denoted as Σ𝑛1 

1
𝑍𝑖 ( 𝑓 ) . Given the assumption 

that resonant frequencies of each sensor circuit are separated with 
enough frequency gaps (or in other word, when one sensor circuit 
reaches its resonant point, the frequency is far away from other 
sensor circuits’ resonant points), we can calculate Σ𝑛1 

1
𝑍𝑖 ( 𝑓 ) at the 

resonant frequency of 𝑘𝑡 ℎ sensor circuit as follows: 

Σ 𝑛 
1 
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= 
1 
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𝑗 
+ Σ𝑖 ≠𝑘 

1 
𝑍𝑖 ( 𝑓 ) 

(11) 

As frequency (𝑓 ) is away from the resonant frequency of 𝑖 𝑡 ℎ (𝑖 ≠ 
𝑘 ) sensor circuit, the impedance of 𝑖 𝑡 ℎ sensor circuit is high enough 
and 1

𝑍𝑖 ( 𝑓 ) can be calculated as: 

1 
𝑍𝑖 ( 𝑓 ) 

= 
1 

1 
2𝜋 𝑓 𝐶𝑙 𝑖𝑛𝑒𝑖 𝑗 

+ 2𝜋 𝑓 𝐿𝑙 𝑖𝑛𝑒𝑖 𝑗 + 𝑅𝑙 𝑖𝑛𝑒𝑖 
(𝑖 ≠ 𝑘 ) (12) 

When the transmission line is not too long, the frequency of the 
resonance formed by line capacitance 𝐶𝑙 𝑖 𝑛𝑒𝑖 and inductance (𝐿𝑙 𝑖𝑛𝑒𝑖 ) 
is much higher than the resonant frequency of 𝑘 𝑡 ℎ sensor circuit (for 
example, 40cm twisted transmission line owns a resonant frequency 
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at 112MHz) and 𝑅𝑙 𝑖 𝑛𝑒𝑖 is small, resulting a small value of 1  
𝑍𝑖 ( 𝑓 ) 

within frequency range ( 1| | ≤ 
𝑍

0.004 when 𝑓 ≤ 30MHz). Then, 
assuming that the capacitive

𝑖 ( 𝑓 ) 
    or inductive sensor circuit is with low 

resistance (e.g. 𝑟𝑘 + 𝑅𝑙 𝑖 ≤𝑛𝑒  
 15),  

𝑘
the reciprocal of the impedance 

of 1 𝑘 𝑡 ℎ sensor circuit ( ) is much higher than the rest sensor 
𝑍𝑘 ( 𝑓 ) 

circuits ( 1| | ≥  0.041  30MHz 
𝑍 (𝑓 ) when 𝑓 ≤ and line length = 40cm), 

making
𝑘 

 influence of other sensor circuits negligible. 
Then, by combining Eq 1 to Eq 3 and the approximation result, 

we can calculate 𝑍 ( 𝑓 ) as: 

𝑍 ( 𝑓 ) = 
1 

1 

(2𝜋 𝑓 𝐿𝑡 ) 𝑗 − 
( (2𝜋 𝑓 )𝑘 

√ 
(𝐿𝑡 𝐿𝑟 ) 𝑗 ) 2 

𝑟 𝑘 +𝑅𝑙 𝑖𝑛𝑒𝑘 
+2𝜋 𝑓 (𝐿𝑙 𝑖𝑛𝑒𝑖 𝑗 +𝐿𝑟 ) 𝑗 

+ 2𝜋 𝑓 𝐶𝑆 𝑀 𝐴 𝑗 
(13) 

Subsequently, 𝑟𝑖 and 𝑅𝑙 𝑖𝑛𝑒𝑘 
can be neglected due to the dom-

inance of transmission line and receiver coil’ s inductance. For 
example, at 7 MHz, the inductive impedance is approximately 200Ω 
without 𝑟𝑖 and 𝑅𝑙 𝑖𝑛𝑒𝑘 

, which is close to the absolute impedance 

(
√︁ 
(200Ω) 2 + (15Ω) 2 ≈ 200.5Ω) when the sum of 𝑟𝑖 and 𝑅𝑙 𝑖 𝑛𝑒𝑘 

is 
15Ω. Thus, we can approximate the calculation of 𝑍 ( 𝑓 ) (in terms 
of magnitude) by neglecting 𝑟𝑘 and 𝑅𝑙 𝑖 𝑛𝑒𝑘 

, finally gaining a result 
as follows: 

|𝑍 ( 𝑓 ) | = | 1 
1 

(2𝜋 𝑓 𝐿𝑡 ) 𝑗 − 
( (2𝜋 𝑓 )𝑘 

√ 
(𝐿𝑡 𝐿𝑟 ) 𝑗 ) 2 

2𝜋 𝑓 (𝐿𝑙 𝑖𝑛𝑒𝑖 𝑗 +𝐿𝑟 ) 𝑗 

+ 2𝜋 𝑓 𝐶𝑆 𝑀 𝐴 𝑗 
| (14) 

Give this, higher resistance in the sensor circuit may reduce this 
approximation’s accuracy, but its precision improves as frequency 
increases. Simulation results in Section 5 also support these findings. 

Finally, Eq. 14 also explains why the impedance spectrum low-
est peaks deviate from the resonant frequencies of sensor circuits. 
These deviations result from combined factors, including receiver 
coil inductance and transmission line’s impedance. Additionally, if 
the resonant frequencies of the sensor circuits are too close to each 
other, their interactions can cause further shifts in the impedance 
spectrum. 
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